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Beyond spatial scalability limitations
with a massively parallel method for
linear oscillatory problems

Martin Schreiber1, Pedro S Peixoto1,2, Terry Haut3 and Beth Wingate1

Abstract
This paper presents, discusses and analyses a massively parallel-in-time solver for linear oscillatory partial differential
equations, which is a key numerical component for evolving weather, ocean, climate and seismic models. The time
parallelization in this solver allows us to significantly exceed the computing resources used by parallelization-in-space
methods and results in a correspondingly significantly reduced wall-clock time. One of the major difficulties of
achieving Exascale performance for weather prediction is that the strong scaling limit – the parallel performance for
a fixed problem size with an increasing number of processors – saturates. A main avenue to circumvent this problem
is to introduce new numerical techniques that take advantage of time parallelism. In this paper, we use a time-parallel
approximation that retains the frequency information of oscillatory problems. This approximation is based on
(a) reformulating the original problem into a large set of independent terms and (b) solving each of these terms inde-
pendently of each other which can now be accomplished on a large number of high-performance computing
resources. Our results are conducted on up to 3586 cores for problem sizes with the parallelization-in-space scal-
ability limited already on a single node. We gain significant reductions in the time-to-solution of 118.33 for spectral
methods and 1503.03 for finite-difference methods with the parallelization-in-time approach. A developed and cali-
brated performance model gives the scalability limitations a priori for this new approach and allows us to extrapolate
the performance of the method towards large-scale systems. This work has the potential to contribute as a basic
building block of parallelization-in-time approaches, with possible major implications in applied areas modelling oscil-
latory dominated problems.
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1 Introduction

In this paper, we investigate a massively parallel matrix
exponential algorithm for simulating stiff oscillatory
partial differential equations (PDEs), which arises in
applications such as magnetohydrodynamics, plasma
physics, weather and climate.

With the current trend of high-performance computing
(HPC) towards massive parallelism, existing solvers are
facing a strong scalability limitation. Here, a key perfor-
mance limitation is the saturation of scalability in space
and a sequential step-by-step approach in time. Achieving
additional parallel speedup on future architectures
requires novel mathematical approaches to overcome this
scalability limitation. Therefore, our strategy for this
paper is to focus on the aspect of developing algorithms
to suit the technology’s strengths and limitations, rather
than modifying the architecture to fit the algorithm.

In this work, we first discuss HPC and mathematical
issues before describing the details of how and when a
reduction in wall-clock time is possible. We are primar-
ily concerned with the solution of equations that are
stiff due to a separation of time scales in the mathemat-
ical description of the physics. This creates fast oscilla-
tions in the system of equations that, when numerical
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accuracy is required, bind the magnitude of the time
step to the spatial resolution which is traditionally
solved sequentially in time. Instead of using sequential-
in-time solvers, we explore the viability of time-
parallelism by investigating the rational approximation
of exponential integrators (REXI).

1.1 Challenges in HPC

The trend for performance increase for all silicon-based
hardware components changed one decade ago. Due to
a breakdown of Dennard’s scaling (Dennard et al.,
1974) in about 2005, additional performance by increas-
ing the frequency for singe-core Central Processing
units (CPUs) was no longer possible. To achieve further
scalability according to Moore’s law1 (Moore, 2006),
the only way to gain more performance was an increase
in on-chip parallelism. This resulted in a change from
single-core to multi-core processors, which are nowa-
days omnipresent even in mobile devices, and an
increase in data processable in one instruction Single
instruction, multiple data (SIMD).

The reduction of the time-to-solution is therefore
limited by the parallelizable part which itself is limited
by the scalability in space with standard time stepping
schemes. This is the case since the parallelizable part is
reduced and at a certain number of processors, the
serial part and communication dominate the computa-
tion time. A potential way to tackle these issues is to
work in an interdisciplinary way among mathematics
and HPC science.

This is also the case for the types of simulations of
interest in this paper, like climate and weather predic-
tion, magnetohydrodynamics and fusion processes,
where the dominant method of achieving parallel
speed-ups has been to use parallelization-in-space by
using a domain partitioning technique. This technique
is prone to failure for strong scalability in the future
Exascale architectures described above due to standard
time stepping solvers and their inherent step-by-step
application.

1.2 Parallelization-in-time and exponential
integrators

Once the strong scaling limitation of domain decompo-
sition methods is reached, new parallelism paradigms
need to be explored. One important avenue is the intro-
duction of parallelism in the time dimension. Although
this is not a new idea, it has recently gained a lot of
attention (see Gander, 2015, for a review). There are
several different ways to explore the time dimension
parallelism, with some successes in applied problems
(e.g. see the work by Berry et al., 2012; Samaddar et al.,
2010; Speck et al., 2012).

For highly oscillatory non-linear problems, such as
the ones arising in climate and weather models, there is
still a lot to be done to show that parallel-in-time meth-
ods can be effective. Haut and Wingate (2014) showed
a way to obtain an efficient parallel-in-time method for
a simplified non-linear oscillatory problem, but this
relies on having a time integrator that can permit very
long time steps without damping the linear oscillations.
The usual implicit time integrators, although they allow
long time steps, generally damp linear waves, so the
time integration techniques need to be rethought for
parallel-in-time strategies. In this direction, the use of
exponential integrators seems attractive.

Exponential integrators deal with the time evolution
in its exponential form, usually making use of its semi-
group properties (Cox and Matthews, 2002; Hochbruck
and Ostermann, 2010). Numerically, the problem results
in having to calculate the exponential of matrices, which
has been studied for many years and there are numer-
ous solution strategies (see Moler and Van Loan, 2003,
for a review). The work of Güttel (2013) suggests using
rational Krylov spaces to approximate the exponential
of skew-Hermitian matrices, which arise in hyperbolic
problems. However, adding a new Krylov subspace
requires an additional matrix–vector multiplication for
each additional subspace, which is inherently serial.
Padé approximations (see Moler and Van Loan, 2003,
and Higham, 2008) require computing power series with
matrix–matrix multiplications, and hence also have this
inherently serial part, which gets critical for large
matrices. Another method to reduce the O(n3) complex-
ity in the case of matrix–matrix multiplications for
exponential integrators was presented in the work by
Bonaventura (2015) and is based on splitting the
domain into subproblems. Exponential integrators have
also been used in the weather and climate community,
with some success (Clancy and Pudykiewicz, 2013;
Garcia et al., 2014). Nevertheless, these methods are
usually intrinsically serial, and we would like to explore
methods that allow an extra degree of time-parallelism
embedded in the exponential integrator, as a way to
reduce time-to-solution.

Along the lines of building parallel-in-time expo-
nential integrators, Gander and Guettel (2013) pro-
posed a parallel-in-time method for general linear
initial-value problems which makes use of polynomial
and rational Krylov methods for the exponentiation
part. In the present paper, we follow the ideas of Haut
et al. (2015), who proposed a rational approximation
of the exponential integrator, which we will denote as
REXI. The key point is that this rational approxima-
tion is massively parallel. The downside is that it is less
general, as it is built only for hyperbolic (oscillatory)
linear initial-value problems, which fortunately, in this
work, is the class of problems we are interested in. As
a direct comparison, for Krylov methods, reducing the
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approximation error requires computing more Krylov
subspaces and hence leads to an increase of the serial
parts. In contrast, as we will show, the REXI approach
leads to an increase in parallelism, which is the main
reason we focus on this approach in this work.

1.3 Overview

For sake of clarity, in Section 2 we review in detail the
implementation of the rational function approach to
compute REXI for matrix exponentials. We evaluate
REXI with various different execution scenarios, differ-
ent discretization schemes and show its competitive-
ness. This is done using various benchmark scenarios
(described in Section 3) which are representative of
the basic building blocks of climate and weather simu-
lations. We present our first results on the numerical
accuracy of the method in Section 4. These results are
important for understanding the role of the different
parameter regimes on the speed and accuracy of the
method. For example, one of these parameters repre-
sents the new degree of parallelization which we can
exploit with REXI to reduce the time-to-solution. The
second type of result, presented in Section 5, is an eva-
luation of REXI using different parallelization aspects
(space and/or time). Finally, we gain insight into the
behaviour of REXI on large-scale systems using a per-
formance model derived in Section 6. For sake of
reproducibility the source code is published as well
(Schreiber et al., 2016). An overview of most relevant
symbols used in the equations is given in Appendices
1,2 and 3.

2 Review of the rational approximation of
exponential integrator (REXI)

This section is a comprehensive discussion of REXI for
linear systems of equations. It provides a fundamental
understanding of how the mathematics translates into
time-parallel speed-ups and therefore illustrates the
method’s strengths and limitations. Even more impor-
tantly, the details published in this section are required
for any other investigators to repeat and improve on
our calculations.

We first review how time parallelism is introduced
into what is often an inherently serial problem before
we outline the details of the REXI approach (Haut
et al., 2015).

2.1 Time-parallelism with REXI in a simplified
ordinary differential equation problem

Consider the ordinary differential equation (ODE)

du

dt
= lu, u(t0)= u0, l 2 C ð1Þ

with the exact solution

u(t)= u0e
l(t�t0) ð2Þ

One standard way to approximate equation (1) numeri-
cally is, for example, using a first-order forward Euler
Scheme

~u(t+Dt)= (1+ lDt) ~u(t) ð3Þ
where ~u denotes a numerical approximation to u(t).

Assuming integration up until time T, with n time
steps (Dt=(T � t0)=n), we have that the Euler scheme
approximates the exact solution with sequential appli-
cations of equation (3) resulting in

~u(T )= (1+ lDt)n|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
’el(T�t0 )

u0 ð4Þ

where the exponential approximation under the braces
is adequate for large values of n, or equivalently, Dt is
sufficiently small.

This kind of step-by-step procedure is inherently
serial and may have stability constraints (particularly
for explicit schemes, such as the one described above).
For oscillatory problems (where l is purely imaginary)
we may replace the inherently serial operation of
approximating el(T�t0) by a sum of independent rational
functions. This transfers the serial nature of the prob-
lem to one that has more parallelism. This is accom-
plished using an approximation of the form

elt’
XN

k=�N

bk

lt+ak

ð5Þ

where ak , bk are precomputed complex numbers and
2N + 1 defines the number of terms in the summation
to approximate the exponential, which will be discussed
in detail in the next subsections.

Each of the terms in the sum can be evaluated inde-
pendently, and therefore, can be distributed on differ-
ent processors. One time step of this scheme (of size
T � t0) would be analogous to n time steps of size Dt of
the forward Euler scheme, but these terms in the sum
may be calculated in parallel. We will show that the
larger the time step (larger T),the larger the number of
terms in the sum needs to be (larger N), but this can be
absorbed in a parallel way. This represents a fundamen-
tal transformation from an inherently sequential step-
by-step in time process to one that can be parallelized.
Rather than taking many small time steps to find the
solution at a certain time, one can take fewer, larger,
parallel steps to reach the same time.

One issue is that each large time step is potentially
more expensive, but highly parallel. This is advanta-
geous if very large time steps are possible or if there is a
gain in accuracy that can be absorbed in a parallel way.
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The trade-off between the extra expense of computing
the rational function and its high degree of paralleliza-
tion is one of the main topics we address in this paper.

2.2 REXI with hyperbolic systems

We now extend this approach to linear hyperbolic PDE
problems of the form

Ut =LU , U (t0)=U0 ð6Þ
with L being the operator in space, the subscript t refer-
ring to the time derivative ∂

∂t
and U being a vector of

unknowns.
The solution may be written as

U (t)= e(t�t0)LU (t0) ð7Þ
where e(t�t0)L is the semi-group or exponential integra-
tor of the operator L. The goal of this section is to
describe how to compute an approximation of U (t) of
the form

e(t�t0)LU (t0)’
XN
n= 0

gn((t � t0)L+anI)
�1U (t0) ð8Þ

where gn and an are parameters to be specified and I is
the identity matrix. This will be done using the rational
approximation of an exponential integrator (Haut
et al., 2015) and we will review the method carefully so
that other investigators will be able to understand and
reproduce our results.

Since it is the oscillatory nature of the problem that
we are investigating, we assume the problem is hyper-
bolic and thus that the linear operator has only purely
imaginary eigenvalues. We begin by describing the
approximation of eix (see Section 2.3), whose rational
approximation for its real part (Re) is

Re eix
� �

’
XN

n=�N

Re
bn

ix+an

� �
ð9Þ

with complex coefficients an and bn to be defined and
the range of the sum n 2 f�N , . . . ,Ng. Then we will
extend these concepts to the general multi-dimensional
case etL (see Section 2.4) followed by the usage of sym-
metry properties which will halve the range of the sum
to n 2 f0, . . . ,Ng (see Section 2.5).

2.3 Rational approximation of exp(ix)

The approximation of the eix used in this paper relies on
the combination of two approximation steps:

1. approximation of eix by a linear combination of
Gaussian kernels;

2. approximation of Gaussian kernels by a linear
combination of rational functions.

2.3.1 Step 1: Approximation of exp(ix) by Gaussian
kernels. Let

ch(x)= (4p)�
1
2e�x2=(4h2) ð10Þ

be the Gaussian function to be used as a basis for our
approximation, where h is a parameter that specifies
the width of the main support region of the basis func-
tion (a horizontal ‘stretching’ measure, similar to the
standard deviation of a non-normalized Gaussian
distribution).

Given an arbitrary complex function f (x), which will
be later specialized to exp(ix), we use superimposition
of translations of the basis functions ch(x) to build the
following approximation

f (x)’
XM

m=�M

bmch(x+mh) ð11Þ

where M controls the interval of approximation (rela-
tive to the width of the ‘domain of interest’) and h
defines the sampling rate (relative to the resolution of
the ‘domain of interest’). The accuracy of the approxi-
mation is highly dependent on proper choices of both h
and M. Since the translated points lay between x�Mh

and x+Mh, this approximation has been shown to be
adequate for jxj.Mh (Haut et al., 2015).

To compute the coefficients bm, we rewrite the previ-
ous equation in Fourier space with

f̂ (j)

ĉh(j)
=

X‘
m=�‘

bme
2pimhj ð12Þ

where the �̂ symbols indicate the Fourier transforms of
the respective functions. The bm are now the Fourier
coefficients of the series for the function f̂ (j)

ĉh(j)
and can

be calculated as

bm = h

Z 1
2h

� 1
2h

e�2pimhj f̂ (j)

ĉh(j)
dj ð13Þ

for m is an integer and 1=h defining the periodicity of
the trigonometric basis function. The parameter h is
then chosen to be small enough (see Section 4.1) so that
the support of the Fourier transform of f is mainly loca-
lized within ½�1=(2h), 1=(2h)�, i.e. almost zero outside
this interval.

Since we are interested in approximating f (x)= eix,
we can simplify the above equation by using the
response in frequency space f̂ (j)= d(j � 1

2p ), where
here d is the Dirac distribution, which leads to
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bm = he�imhbch

1

2p

� ��1

ð14Þ

Using the Fourier transform of the Gaussian function
we can finally build a clear expression for the coeffi-
cients bm for f (x)= eix

bm = he�imh 1

he�h2
= e�imheh

2 ð15Þ

As shown in the work by Haut et al. (2015), the
approximation given by equation (11) is very accurate
for jxj.Mh. The x variable in the exp(ix) function will
play the role of representing different wavenumbers of
the linear operator L. Therefore, we expect that M and
h can be appropriately chosen to allow an adequate
representation of the relevant wavenumbers of the
problem.

2.3.2 Step 2: Rational approximation of the Gaussian basis
functions. The second step is the approximation of the
basis function ch(x) itself with a rational approxima-
tion. A close-to-optimal rational approximation of
ch(x) is given by

ch(x)’Re
XL
l=�L

al

i x
h
+(m+ il)

 !
ð16Þ

where m and al are constants given in Table 1 of the
work by Haut et al. (2015). The number of coefficients
(2L+ 1) depends only on the desired accuracy for this
approximation. With L= 11 an accuracy greater than
single precision is already obtained.

2.3.3 Final step: Rational approximation of
exp(ix). Combining approximation (step 2) into
approximation (step 1), we have that

eix’
XM

m=�M

bmch(x+mh)

=
XM

m=�M

bm
XL
l=�L

Re
hal

ix+ h(m+ i(m+ l))

� �
Now, defining n=m+ l, an = h(m+ in)

bRe
n = h

XM
m=�M

XL
l=�L

Re(bm)aldn,m+ l ð17Þ

and

bIm
n = h

XM
m=�M

XL
l=�L

Im(bm)aldn,m+ l ð18Þ

where di, j= 1 if i= j and zero otherwise, we finally
obtain the rational approximation for exp(ix) as

eix’
XN

n=�N

Re
bRe
n

ix+an

� �
+ iRe

bIm
n

ix+an

� �
ð19Þ

where N = L+M .

2.4 Rational approximation of the linear operator

To see the relationship between the approximation of
eix and etL, with t=(t � t0), remember that the oscilla-
tory problem L has only purely imaginary eigenvalues.
Therefore, it maybe decomposed as SLS�1, where L is
a diagonal matrix in complex space containing the
purely imaginary eigenvalues of L, and S is a unitary
matrix related to the eigenvectors.

Consequently

etL =
X‘
k= 0

(tL)k
k!

=
X‘
k= 0

tkSLkS�1

k!

=S
X‘
k= 0

(tL)k

k!

 !
S�1 =SetLS�1

ð20Þ

where we used

etL =
. . .

eiljt

. . .

0@ 1A
and the fact that the eigenvalues are imaginary (there-
fore ln are real). Since etL is diagonal, it can be
eigenvalue-wise approximated in the same way as the
function eix, with x= tln.

Although L has imaginary eigenvalues, we wish to
evaluate etLU , which is real valued. Therefore, we will

Table 1. Overview of the different combinations of spatial discretizations, grids, time stepping methods and linear solvers for the
REXI terms.

ID Space discretization Grid Time integration Solver for (L+aI)�1

(A) Finite differences C-grid RK4 –
(B) Finite differences A-grid REXI Finite differences in spectral space
(C) Spectral methods A-grid RK4 –
(D) Spectral methods A-grid REXI Spectral basis functions in spectral space
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use the real approximation of eix applied to the multi-
dimensional linear operator

etL’Re
XN

n=�N

bn(tL+anI)
�1

 !
ð21Þ

where bn is given by equation (17) and an = h(m+ in).
We verify that directly substituting tL as ix in the

rational approximation for the real part of exp(ix) and
treating it as a matrix operator gives a valid approxi-
mation for etL, since

XN
n=�N

Re bn(tL+anI)
�1

� �
=

=
XN

n=�N

Re bn(tSLS
�1 +anI)

�1
� �

=
XN

n=�N

Re bnS(tL+anI)
�1S�1

� �
=S

XN
n=�N

Re bn(tL+anI)
�1

� �" #
S�1

’SetLS�1 = etL

ð22Þ

where I is the identity operator and we used that the
expression in brackets is a rational approximation for
the real part of the exponential of each eigenvalue, eitlj ,
and therefore an approximation for etL.

2.5 Properties of the method

To obtain an accurate representation of etL, the rational
approximation must take into account the spectra of the
operator L, as shown in equation (22). If �l=maxnjlnj is
the maximum absolute eigenvalue of L, then we need to
build the rational approximation in such a way that
t�l\hM . Assuming a fixed value of h, given by the accu-
racy desired for step 1 of the procedure to build the
rational approximation, M has to be chosen large enough
to cover the whole spectra of L. Also, if a larger time step
(t) is required, larger M values are also expected.
Analytical expressions relating the error incurring from
different choices of h and M can be found in the work by
Haut et al. (2015). In Section 4, we will numerically
explore optimal choices for these parameters.

The coefficients an and bn are conjugate symmetric
(Hermitian) about the central pole, such that a�n =an,
b�n =bn and Im(a0)= Im(b0)= 0. Furthermore, it
holds that (L+aI)�1U =(L+ �aI)�1U with the over-
bar denoting the complex conjugate. This allows us to
reduce the computational amount almost by a factor of
two giving the real valued solution

e(t�t0)LU (t)’
XN
n= 0

Re gn(tL+anI)
�1U (t0)

� � ð23Þ

With

gn =
b0, n= 0

2bn, n.0

	
Therefore, the rational approximation requires the
solution of N + 1 linear systems for U of the form

L+ t�1anI
� �

U = t�1U(t0) ð24Þ
where the time step is given by t=(t � t0).

Some care needs to be taken in the choice of the
method to be used to solve these systems. Since the
rational approximation requires all eigenvalues to be
purely imaginary, the numerical scheme should be able
to preserve this property. We will discuss stability con-
straints and strategies to deal with numerical methods
that could potentially produce spurious real eigenva-
lues in the next subsection.

2.6 Stability

We briefly analyze the stability of the time stepping
method based on repeated applications of RN tLð Þ’etL,
where the construction of the rational function

RN lð Þ=
XN

k=�N

bk

l+ak

ð25Þ

is discussed in the previous sections.
We first assume that L is a matrix with a purely ima-

ginary spectrum. To do so, suppose that

max
lj j � Lk k2

RN tlð Þ � eitl


 

� d ð26Þ

where Lk k2 is the operator 2-norm and d is an error
bound that can be as small as required depending on
the parameter choices of the rational approximation. It
then follows that

max
l� Lk k2

RN tlð Þj j= max
l� Lk k2

eitl + RN tlð Þ � eitl
� �

 



� 1+ d
ð27Þ

Therefore, repeated applications (n) of RN are bounded
by

max
l� Lk k2

RN tlð Þð Þnk k� 1+ dð Þn � end ð28Þ

Consequently, as long as the number of time steps n
satisfies n. 1=d, the method is stable (regardless of the
size of t).

The time stepping error grows linearly in the number
n of time steps, so there is a natural accumulation of
errors O nDTð Þ when more time steps are taken.
Therefore, an accuracy degradation is expected if more
than n=O 1=Dtð Þ time steps are taken, so the stability
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constraint for the scheme is not overly restrictive for
reasonably accurate solutions.

As discussed in the work by Haut et al. (2015), it is
possible to avoid the above restriction on n – as well as
to extend the above analysis to the case where L is a
possibly unbounded operator – by using a rational
function filter S lð Þ such that

max
l2R

S lð ÞRN tlð Þj j � 1 ð29Þ

Defining eRN = SRN as the filtered rational approxima-
tion, it then follows that

~RN tLð Þ�� ��
2
� max

l� Lk k2
~RN tlð Þ

 

� 1 ð30Þ

and the time stepping method is unconditionally stable.
See the work by Haut et al. (2015) for further details.
Importantly, this also allows one to use a rational
approximation RN tlð Þ that only approximates eil on
partof the spectrum of L.

For numerical solvers of equation (24) that do not
preserve purely imaginary eigenvalues, unstable modes
can also be treated with the rational filter. The filter
may be applied as a rational approximation as well,
which contributes to the overall parallelism-in-time. For
the discretization methods adopted in this work, it was
not necessary to apply any filtering for stability reasons.

3 Benchmark description

The purpose of this section is to examine the feasibility
and limitations of gaining more parallelization with
REXI for simple, but realistic, problems. We therefore
use the linear rotating shallow water equations for our
benchmarks because they are widely used in the devel-
opment of algorithms for weather and climate models.
Although full predictive models (e.g. weather and cli-
mate ones) are non-linear, the linear part of the systems
plays an important role in determining the oscillatory
behaviour (and time step limits) of the problem.

3.1 Problem description

We will solve the rotational linear shallow water equa-
tions (see also the work by Haut et al., 2015), linearized
with respect to a rest state with a mean water depth of
�h and defined for perturbations of height h and velocity
components (u, v). The linear operator L may be writ-
ten as

L=
0 ��h∂x ��h∂y

�g∂x 0 f

�g∂y �f 0

0@ 1A ð31Þ

which results in a matrix with purely imaginary eigen-
values for the discretization methods used in this work.

A bi-periodic simulation domain is used and we wish to
solve

Ut =LU ð32Þ
where

U =(h, u, v)T ð33Þ
If not otherwise stated, we set g= �h= f = 1 and the
domain will be given by the bi-periodic unit square
O= ½0, 1�2.

For the rational approximation, linear solutions of
problems of the form

(L+aI)U =U0 ð34Þ
are obtained in the following way.

First, we note that the momentum equations lead to
a problem of the form

AaV =V0 + grh ð35Þ
with V =(u, v) and analogously V0 =(u0, v0), and

Aa =
a f

�f a

� �
ð36Þ

The solution is

V =A�1
a (V0 + grh) ð37Þ

Further reformulations with the assumption of a con-
stant f and using k= f 2 +a2 lead to

Dh� k2h = r0 ð38Þ
where

r0 =
k

a
h0 � �h

f

a
z0 + �hd0 ð39Þ

d= ux + vy is the wind divergence, z= vx � uy is the
wind (relative) vorticity and Dh=hxx +hyy is the
Laplacian of the fluid depth.

Therefore, to solve the linear problems, given as in
equation (34), we first solve the associated Helmholtz
problem for h (from equation (38)), and then calculate
the velocities directly from equation (37).

3.2 Numerical methods

In this section we discuss the numerical methods used
for the studies in this paper. An overview of the meth-
ods is presented in Table 1.

3.2.1 Time integration. Two different time integration
methods are used in this work:
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� RK4 refers to a Runge–Kutta fourth-order time
stepping method;

� REXI denotes the time integration with the rational
approximations, see Section 2.

The Runge–Kutta schemes are well understood
methods for time integration and serve as the baseline
for the comparisons with the alternative time stepping
methods.

3.2.2 Space discretization. The benchmarks were con-
ducted based on two different (and relevant) discretiza-
tion strategies in space. The derivatives in the linear
operator L can be based on:

1. finite differences (FD): here, the standard second-
order differences are used (e.g. a ½�1, 0, 1� stencil
for d

dx
);

2. spectral derivatives: the derivatives computed in
spectral space. In this case, the variables are trans-
formed to Fourier space, the derivatives are calcu-
lated, and the variable is reverted to physical space
(e.g. d

dx
ei2px = 2ipei2px).

We made these choices for the following reasons.
First, finite difference schemes are one common way for
solving PDE problems in general, and are particularly
relevant for weather, climate and ocean models (Madec,
2014; Wood et al., 2014). Second, spectral methods
allow high-order accuracy with great efficiency if used
with optimized fast Fourier transform (FFT) algorithms
and some state-of-the-art weather forecasting systems
use spectral methods based on spherical harmonics
(Barros et al., 1995; Mozdzynski et al., 2015).

3.2.3 Grid. For the spatial grids we use the following
schemes.

1. Collocated A-grid: All variables are placed at the
cell center. This method is used for all REXI time

stepping methods and for the RK4 time stepping
method with spectral spatial discretization.

2. Staggered C-grid: The potential is placed at the cell
centre and the velocity components at the cell
edges. Furthermore, computations are based on
the vector invariant formulation. This placement is
used for RK4 time stepping methods with finite-
differences.

The A/C naming convention follows the Arakawa
and Lamb (1977) convention used in ocean and atmo-
spheric models and has been discussed for many years.
As an example, Randall (1994) describes how the use
of staggered C grids enables better representation of
the fast waves existing in shallow water equations and
avoiding computational spurious modes. On the other
hand, collocated grids (A-grids) allow the use of effi-
cient FFT solvers.

3.2.4 Solver for (L+aI)�1. For the REXI time stepping
scheme, a linear system solver is required. More pre-
cisely, we need to solve a Helmholtz problem, given by
equation (38). For this purpose, we implemented two
different solvers.

1. Finite differences: Finite difference operators are
implemented via a convolution operation of the
finite difference stencil in Fourier space which is
then solved directly.

2. Spectral basis functions: Spectral derivative opera-
tors are computed in Fourier space.

The Helmholtz problem is discretized into an alge-
braic linear system, which is then solved using a fast
Helmholtz solver (direct Fourier solver) using spectral
basis functions for spectral methods or convolutions of
the stencils for finite differences (see the work by
Swarztrauber and Sweet, 1996). Due to its efficiency,
we decided to use the fast Helmholtz solver. However,

Figure 1. Examples of shallow-water simulations. Top row: Gaussian initial condition at time t= f0:0, 0:2, 0:4g. Bottom row:
Wave-like initial conditions at time t= f0:0, 0:1, 0:2g. We solve these equations with a parallel-in-time approach which avoids time
step restrictions.
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further investigation on more generic solvers is required
and we discuss this in Section 8.

3.3 Initial conditions

We use two different initial conditions for our evalua-
tion of the REXI approach (see Figure 1).

3.3.1 Wave scenario. The wave scenario is initialized with
the following values for the perturbation height h and
velocity components (u,v)

h(x, y)= sin (2pxvx) cos (2pyv y)

� 1

5
cos (2pxvx) sin (4pyv y)

ð40Þ

u(x, y)= cos (4pxvx) cos (2pyv y) ð41Þ
v(x, y)= cos (2pxvx) cos (4pyv y) ð42Þ

with mean water depth given by �h= 1 and
(vx,v y)= (2, 1) (see Figure 3).

These initial conditions can be represented in spec-
tral (Fourier) space; therefore the errors are very small
when the spectral solver is used for the REXI approach.
This ensures that we can use this set of initial conditions
to understand the accuracy of the rational approxima-
tion method.

3.3.2 Gaussian scenario. In this case we use an initial
Gaussian function for the fluid height perturbation

h(x, y)= e�50(x2 + y2) ð43Þ
assuming a background constant height of �h and zero-
valued velocity fields as initial conditions. This initial
condition is not exactly representable in spectral
(Fourier) space.

3.4 Error analysis

For the comparisons of the numerical results in
Section 4, we use the root mean square (RMS) error
norm

Figure 2. Left: Parallelization-in-space only, each color denotes one compute unit and each slice in time typically requires additional
synchronization for the time stepping.
Centre: Parallelization-in-time only, each time slice is assigned to a differently coloured group of compute unit. Overheads in space
are non-existent, but a final synchronization in time is required.
Right: Schematic view on the realization of the REXI parallelization. The first group of compute units broadcasts the initial conditions to
all other compute ranks. Second, each group solves the corresponding REXI terms. Third, all solutions are reduced to the compute units
on the first rank.

Figure 3. Initial conditions for the wave scenario given by parameters (vx,vy)= (2, 1) (see Section 3.3.1). The variables shown are
the height perturbation (h), velocity in x-direction (u) and velocity in y-direction (v) from left to right.
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ERMS( f )=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
ij fij � ef ij� �2
NxNy

vuut ð44Þ

which is based on the discrete computed solution fij for
the points given by (xi, yj) and on the reference solution
calculated at grid points given by efij, with the resolu-
tions in the x and y directions given respectively by Nx

and Ny.
For the performance results in Section 5, we use the

maximum error norm which is given by

Emax( f )=maxijjfij � efijj ð45Þ
The reference solution is given by a generalized analyti-
cal solution of the linear operator (see the work by
Embid and Majda, 1996) and we always compute the
error with respect to the height (h) field.

4 Numerical evaluation

This paper is based on a new method to accelerate
computations. However, the understanding of the rela-
tionship between different parameter/method choices is
important to ensure accuracy, as well as efficient
computations.

A key part is the understanding of how the REXI
parameters M and h interact with each other and with
different methods or model parameters (such as the
Coriolis parameter, gravity and mean water depth). In
the following sections, we conduct a sequence of para-
meter studies with successively increasing complexity,
with the aim of understanding the accuracy versus
workload relationship.

4.1 REXI parameters (h,M )

We start by analysing the REXI parameters, h, M
and L.

In Figure 4 we analyse the dependency between M
and h for both solvers (finite differences (B) and spec-
tral (D)) investigated with the REXI method. It shows
that h needs to be chosen to be sufficiently small (at
least h\2) and M sufficiently large (at least M.32). As
expected, smaller values of h require larger values of M
to preserve accuracy, which reveals a triangular region
of the most accurate results.

Also as expected, we note that REXI has higher
accuracy using a spectral method (lower panel of
Figure 4). For the finite-difference method (upper
image), we compute the differential operators with
finite differences, which results in a lower accuracy of
the solution compared to the spectral method.

For efficiency reasons, we are interested in reducing
the amount of total workload which is given by M.
However, reducing M requires increasing h and the
area with acceptable errors gives an upper limit of h.

We will adopt a fixed parameter, h= 0:2, throughout
the remainder of this work, which is large enough to
reduce the workload, but small enough to produce
accurate results given M.32.

4.2 Grid resolution (N)

Using standard time stepping methods, an increasing
resolution would require additional computations, due
to the increase in spatial workload, and also an increase
in the number of time steps, due to time step size restric-
tions (Courant-Friedrichs-Lewy (CFL) condition).

With the REXI approach, an increasing resolution
would also require additional computations due to the
increase in the spatial workload, but the time step size
can be maintained as the same, as long as additional
REXI terms (M) are included. We show in Figure 5 the
errors for varying resolution for the Gaussian scenario,

Figure 4. Error analysis (RMS) of the REXI scheme with
respect to varying h and M using two methods. The top image
shows method (B) which uses a finite-difference solver. The
bottom image shows method (D) which uses a spectral solver.
The errors are those of a single large time step of size t= 1,
for the waves initial conditions scenario. We can observe
limiting values for h and M and also that M is linearly inversely
proportional to h.
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which reveal that additional resolution requires a larger
frequency spectrum to be represented (larger �l) and
therefore larger M. The main advantage of REXI is that
the extra workload of having more REXI terms can be
done massively in parallel, allowing it to cope with wall-
clock time restrictions, whereas in standard time stepping
methods the reduced time step size significantly impacts
the wall-clock time of the computation.

4.3 Initial condition wave-number (v)

Next, we analyse a possible dependency of the REXI
parameters depending on the initial condition. To do
so, we vary the (vx,v y) parameters in our waves sce-
nario by setting (vx,v y)= (2v,v). The error plots are
given in Figure 6 (top panel) and we indeed see a depen-
dency on the frequency of the initial conditions. As
expected, initial conditions containing higher wave
numbers require that REXI has more terms (largerM).

4.4 Time step size t

We investigate the effect of different time step sizes (t)
in M. Error results are shown in Figure 7. Due to the
known relation that �lt\hM , for fixed resolution and
fixed h, larger time step sizes require more REXI terms
(larger M).

4.5 L stiffness (g, f, �h)

For standard explicit time stepping methods, the time
step size is limited by the speed of the wave propaga-
tion (CFL condition needs to be respected). A faster
wave propagation would then force smaller time step
sizes for stability reasons. This propagation speed also
depends on the oscillatory stiffness of our operator,
given by g, f and �h.

We test for such a potential dependency by varying
one of the parameters f, g or �h and keeping the other
two values fixed. Error heatmaps, with varying linear
operator parameter and REXI parameter M, are given
in Figure 8. Here, we can observe again a dependency
of the REXI parameter M on the frequencies which
describe the stiffness of the system. Additionally, the
varying frequency requires increasing M only after a

Figure 5. Error analysis (RMS) of the REXI scheme with
respect to varying resolution N and M using method
(D)-spectral solver. The errors are those of a single large time
step of size t= 1, for the Gaussian initial conditions scenario.
We can observe that M linearly depends on the resolution, so
that higher resolutions require larger values of M.

Figure 6. Error analysis (RMS) of the REXI scheme with
respect to varying wave numbers of the initial condition (v using
method (D)-spectral solver. The errors are those of a single
large time step of size t= 1, for the waves initial conditions
scenario. We can observe that M linearly depends on the wave
number, so that higher v requires larger values of M.

Figure 7. Dependency of REXI parameter M on varying time
step size. To compute larger time steps, M also has to be increased.
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certain point and we discuss this briefly. We account
for this by the other oscillatory parts in the linear oper-
ator. These oscillations dominate the error as can be
seen by the constant error over a range of the varying
parameter for a constant M. After the parameter which
we vary reaches a frequency which is similar to the one
of the other frequencies in the operator, the varying fre-
quency starts dominating the error, and hence also
requires increasing the REXI parameters M.

Next, we have a look at dispersion effects of the
REXI approximation. We use a spectral representa-
tion and decompose L into a system of independent
equations for each spatial frequency. Furthermore,
we assume that an accurate solver (up to machine
precision e.g. with the fast Helmholtz solver) is used
for solving the inverse problem in each REXI term.
The linear operator L can be decomposed in spectral
space to

etL̂ = ŜetL̂bS�1

with the symbol b denoting the spectral representation
(see also the work by Embid and Majda, 1996). Then,
we can directly compute our solution by using

Û (t)= etL̂Û (0)

= ŜetL̂Ŝ
�1
Û (0)

and obviously no error is introduced so far. We use
REXI to approximate the frequencies given by etL̂,
yielding

Û k(t)= etL̂k Û k(0)

’Ŝk

XN
n= 0

Re gRe
n (tL̂k +anI)

�1
� �" #

Ŝ�1
k Û k(0)

with the selected spatial frequencies denoted by
k=(k1, k2) and time frequencies by s. We focus on the
case of k1 6¼ 0 and k2 6¼ 0, yielding the eigenvalues for
the vortical/geostrophic mode s0 = 0 and inertia-
gravity (Poincaré) modes s61 =

6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4p2(�hgk21 + �hgk22 )+ f 2

p
. With the REXI parameter

M being related to the fastest waves, we can explain the
dependencies of the REXI parameter M on f, �h and g
as follows. The stiffness of the operator is linearly
dependent on the Coriolis frequency f, and hence
M } f , and we can observe this linear dependency in
the top image in Figure 8. Regarding the dependency
on �h and g, we expect that the REXI parameter is

dependent on both coefficients by M }
ffiffiffiffiffiffi
�hg

p
. This beha-

viour can be also observed in the middle and bottom
image in Figure 8 by a steeper slope of the boundary of
sufficiently accurate solutions.

5 HPC performance evaluation

The current trends in HPC go towards massive paralle-
lism and the parallelization of applications was so far

Figure 8. Error sensitivity study for REXI parameter M with
varying parameters f (Coriolis frequency), g (gravitational
constant) and �h (average height) with resolution 1282. The
varying frequency requires increasing M only after a certain
point. This is because the frequencies which are kept constant in
the linear operator L are dominating the error.
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mainly focusing on a parallelization-in-space. In this
work, we consider problem sizes which are assumed to
be not scalable at all (see Section 5.2). To overcome
such scalability limitations, one solution was presented
with REXI (see Section 2). This allows us to run simula-
tions on thousands of cores and this section is on evalu-
ating the potential reduction in wall-clock time.

We conducted all performance benchmarks on the
CoolMUC2 cluster which is based on an Intel(R)
Xeon(R) CPU E5-2697. Each socket is equipped with
14 physical cores, two sockets are installed on each
compute node and hyper-threading is deactivated. All
computations were done in the SWEET software which
is freely available (Schreiber et al., 2016). The Intel(R)
icpc compiler was used for compilation with Intel
Message Passing Interface (MPI) for distributed paral-
lelization. For (hybrid MPI+X) threaded paralleliza-
tion we pinned the threads to the cores with compact
affinities. We used the FFTW (Frigo, 1999) as a third
party library compiled with the Intel(R) icpc.

All simulations in this section were computed over
DT = 50 simulation seconds. We used the RK4 time
stepping method for the finite-difference and spectral
method. Using a CFL ’ 0:22, this resulted in time step
sizes of about 0.0017 s with RK4. A reduction of the
CFL would result in decreasing the error in time with

order 4, but also an increase in the number of required
time steps. These additional time steps would then
directly lead to an increase in wall-clock time with tra-
ditional time stepping methods.

For the REXI time stepping, the size of each time
step is Dt= 5 simulation seconds, and hence 10 time
steps are done in total.

5.1 Determining REXI’s M parameter for
performance studies

We first conducted a parameter study with varying M
and wave-like initial conditions to ensure that all paral-
lel REXI computations are of sufficient accuracy.
Results for spatial approximation with spectral meth-
ods and finite-differences are given in Figure 9.

We first analyse the upper plot, which shows the
errors for the finite-difference method. In contrast to
the computations in the previous section, these simula-
tions are executed over a relatively long simulation time
of 50 s with 10 s per time step. With the finite difference
method, a reduction in the error only starts with a reso-
lution � 2563 256. However, for a resolution of
1283 128 which is of interest to us, a convergence is
reached for M ’ 2048. We link this to the results of the
previous section. Figure 4 gives for h= 0:2 a lower limit

Figure 9. Maximum error norm computed on surface height for different REXI parameters M. Results are plotted for spectral
methods (bottom) and finite-difference (top). The errors are identical for different resolutions since the initial condition can be
error-free represented in spectral space.
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ofM � 256 poles for a single simulation second and the
same simulation parameters. Figure 7 shows that taking
time steps which are five times larger also requires
increasing M by a factor of five. Hence, M � 5 � 256
poles are required for a convergence which confirms the
REXI results are sufficiently accurate forM = 2048.

The lower plot shows the errors for the spectral
method. With this method, we can observe that the
errors are steadily decreasing with increasing REXI
parameter M. Furthermore, by adding more terms in
the REXI approximations we can also gain results
which are more accurate compared to spectral methods.
Here, the spatial errors are obviously not dominating.
We account for that by the errors in the RK4 time step-
ping scheme. Using the REXI approximation allows us
to overcome the errors introduced with a RKn time
stepping method and we would like to remind that this
reduction is paid for by an increase in the degrees of
parallelization via the increasing M.

In contrast, reducing the errors with standard time
stepping methods can be accomplished, for example,
by decreasing the time step size. However, this would
directly lead to an increase in total simulation time,
whereas with REXI, this leads to an increase in
parallelism.

5.2 Space-parallelization results (non-REXI)

To show that we are tackling a strong scalability prob-
lem, we conducted scalability tests with resolutions of
322, 642 and 1282.

The results for the finite-difference methods on a
(staggered) C-grid are given in the top image in
Figure 10. We omitted plotting results for larger resolu-
tions due to caching effects resulting in a non-monotone
scalability. Only problem sizes are considered in this
work which are not influenced by these caching effects.
These are limited in their scalability on a single shared-
memory Non-uniform memory access (NUMA) node.

Comparing these results with the ones for spectral
methods on an A-grid (bottom image in Figure 10), we
can observe that spectral methods are by far more lim-
ited in their scalability. This can be explained by the
computational complexity of spectral methods. First of
all, the operations can be accomplished element-wise in
spectral space without requiring (computational more
intensive) stencil operations. This allows an efficient
implementation with a parallel-for loop and element-
wise operations (mainly multiply and add operations).
Second, the aforementioned issue also results in a low
workload, hence leading to an increase of threading
overheads.

For both methods, we can observe a clear scalability
limitation even for a single shared-memory node with
standard parallelization-in-space methods. In the next
sections, we evaluate the REXI method as one of the
parallelization-in-time strategies to overcome these scal-
ability limitations.

5.3 Time-parallelization results (REXI)

We first evaluate the time-to-solution with a paralleli-
zation in the time dimension only. The simulation time
for finite-difference and spectral methods with different
REXI M parameters is plotted in Figure 11. For an
improved comparison with the RK4 time stepping
method, we also plotted the time-to-solution. Here, we
used the best time-to-solution for the numbers of cores
which would typically lead to reduced scalability.

Regarding the REXI method, we can observe a con-
vergence of the time-to-solution plots at a certain num-
ber of cores. Using 112 cores, all the maximum amount
of workload assigned to each compute core depends on
the number of M. With this number of cores and for
REXI parameters M =(128, 256, 512), the maximum
workload assigned to a compute rank is (2, 3, 5) REXI
terms, respectively. Therefore, we also observe different
run times for the different REXI terms. However, this
changes when increasing the number of cores. For
example, if the number of cores exceeds the number of
REXI terms (e.g. at 896 cores), the maximum workload
on each compute rank is one and all time-to-solution
plots are matching.

Figure 10. These examples show the classical strong scaling
limitation often found for parallelization-in-space only. The
horizontal axes show the number of computing cores, the
vertical axes are the scalability for both (top figure) finite
differences (staggered) C-grid (method id (A)) and (bottom
figure) spectral methods on an A-grid (method id (B)). The
strong scaling limitation can be seen in every line: for a fixed
number of RK4 steps used in these examples, adding more
processors does not lead to an increase in scalability.
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5.3.1 Finite-difference methods. For the finite-difference
methods, we can observe a significantly faster compu-
tation time with the REXI approach compared to the
RK4 time stepping method. Using only a single core,
we get a simulation time of 332.19 s with the RK4 time
stepping and 28.71 s with the REXI time stepping
method. This results in a performance improvement of
11:573 . Activating the MPI parallelization with
REXI, we get a reduction of the time-to-solution of
332:19
0:2210 = 1503:03 .

5.3.2 Spectral methods. With the spectral method, the
REXI approach is not able to be time-to-solution

competitive with a single core execution. We account
for that by the high spatial accuracy of the spectral
method which also requires the REXI method repre-
senting more time frequencies accurately in contrast to
the finite-difference method. For the domain resolution
of 1283 128, we require at least M = 16384 REXI
terms. Here, the REXI method is only competitive
using at least four cores for a parallelization-in-time
(58.2 s with REXI vs. 67.4 s with RK4 time stepping).
However, we can continue to increase the number of
cores, since the scalability limitation is given at
M + L+ 1= 16384+ 11+ 1= 16396 cores. Using
3584 cores, we get a performance improvement of
67:4
0:57 = 118:33 . These plots still indicate a further
reduction in computation time, but we reached the
resource manager limits of the compute cluster and we
would like to point to Section 6 for a performance
model.

5.4 Space-time-hybrid-parallelization results (REXI)

In this section, we analyse the combination of the dif-
ferent parallelization concepts presented so far:
parallelization-in-space and parallelization-in-time.
Figure 12 shows plots for the finite-difference method
(top) and spectral methods (bottom) and two different
parallelization strategies are used.

1. ‘REXI M=. time+ spacepar’ runs the computa-
tions with an OpenMP parallelization-in-space and
an MPI parallelization-in-time. Hence, 14 threads
are used in this case for a spatial parallelization on
each socket and total cores

14
MPI ranks.

2. ‘REXI M=. timepar’ uses an OpenMP and MPI
parallelization exclusively for the parallelization-in-
time. Here, the reduce operations are executed first
on each rank with a threaded parallelization. This
is followed by a reduce operation on the REXI
terms over all MPI ranks.

Similar to the parallelization-in-time method dis-
cussed in Section 5.3, we can observe a limitation in
scalability if the number of cores exceeds 1000, inde-
pendently of the utilized discretization-in-space (finite-
difference or spectral).

5.4.1 Finite-difference method. We start by discussing the
results based on finite-differences in space for REXI
M = 2048. Using only 14 threads, the parallelization-
in-space-and-time (‘REXI M=2048 time+ spacepar’)
results in larger time-to-solution compared to using only
a parallelization-in-time (‘REXI M=2048 timepar’).
Here, the overheads for the parallelization-in-space are
larger than the ones for the parallelization-in-time. For
an increasing number of cores, this compensates (cross-
ing of lines) after only quadrupling the number of cores

Figure 11. This figure shows REXI performance going beyond
the strong scalability limit for time parallelzation only. The
horizontal axes are the number of cores and the vertical axes
are the time-to-solution. Top figure: This plot shows the results
for finite differences. The red line shows the time-to-solution
for RK4. As in Figure 10, the strong scaling limitation can be
easily seen since the reduction in time-to-solution stagnates.
The other three lines are the REXI method which, for these
benchmarks, always leads to an improvement in the time-to-
solution. Bottom figure: Results for spectral methods are shown
here. The green line with M= 16384 computes results of higher
accuracy with REXI. This also leads to an improvement in the
time-to-solution compared to the parallelization-in-space
method which is given by the red line. Notice that the time-to-
solution increases with a higher number of REXI terms, but that
all three cases decrease the time-to-solution as soon as you add
more processors.
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to 56. With a parallelization-in-time computation on
1792 cores, we get a maximum performance improve-
ment of 42:05

0:2016 ’ 208:583 . For 1568 cores, switching
from a parallel-in-time to a parallelization-in-space-and-
time we get a performance improvement of 0:202

0:140 = 1:44.
The total performance improvement is given by
42:05
0:1401 ’ 300:143 with a parallelization-in-space-and-
time approach.

5.4.2 Spectral methods. We observe that for the spectral
method the hybrid parallelization-in-space-and-time is
never or only hardly beneficial. Here, a pure
parallelization-in-time is clearly the best choice. We
account for this in the following way. Comparing the
number of REXI terms for the spectral and finite-
difference methods, we require significantly more
REXI terms for the spectral methods. As a conse-
quence, this also results in compensating the paralleli-
zation overheads by the increasing amount of
workload per core. The total performance improve-
ment is 27:99

0:3402’ 82:283 with a parallelization-in-space-
and-time approach and we expect a more significant
performance improvement for a hybrid parallelization-
in-space-and-time approach with a significantly larger
number of computing cores.

5.5 Speedups depending on REXI time step size

In this section we investigate the performance of REXI
for varying time step sizes. Obviously, there are over-
heads included in running a massively parallel REXI
approach. These overheads have to be compensated by
the size of the time step. To get insight in to the run
time behaviour for different time step sizes, we con-
ducted several benchmarks with the time-to-solution
shown in Figure 13. The total simulation time was set
to 50 s. With Dt the time step size, 50=Dt time steps are

Figure 12. This figure shows REXI performance when using
parallelization in both time and space (hybrid) on a grid with a
1283128 resolution. As in Figure 11, we plot time-to-solution
versus the total number of processors for both the finite-
difference and spectral methods. REXI M=. time+ spacepar
denotes a parallelization-in-space (OpenMP) and parallelization-
in-time (MPI). REXI M=. timepar denotes a parallelization-in-
time only (MPI+OpenMP). Results are plotted for finite-
difference (top) and spectral methods (bottom). We would like
to discuss the solid and dashed blue lines in the top plot. These
lines show the time-to-solution for REXI with M= 2048 terms.
The dashed line uses only a single core for each REXI term and
we can observe that they offer the best performance for a low
number of computing cores. After about 2048 cores, adding
more cores does not lead to a further decrease of the time-to-
solution. This is because no workload (in our case solving one
REXI terms) can be assigned to the additionally added cores,
and hence they are idling. Here, activating also a parallelization-
in-space to solve the REXI terms results in an additional
reduction of the time-to-solution.

Figure 13. Time-to-solution for simulation over 50 s and
different REXI time step sizes. Dt=. denotes the time step
size for REXI and M=. the number of required REXI terms
to generate competitive results. With REXI time stepping,
50=Dt REXI time steps are computed. The topmost green line
shows the time-to-solution with a RK4 time stepping method.
The dark blue line (Dt= 0:01, M= 16) below this one shows
an increasing run time for increasing number of cores. This is
due to the low number of REXI terms (M= 16) which avoids
exploiting the additional number of cores since there is not
enough workload. Due to parallelization overheads, the run
time is getting even longer. We see a competitive REXI time
stepping method for all considered time step sizes.
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executed in total. We observe a very good scalability
for time step sizes of at least five. For smaller time step
sizes, the scalability gets successively reduced. For rela-
tively tiny time step sizes of 0.1, the performance peak
is reached at 224 cores. After this peak, the time-to-
solution increases and therefore the scalability
decreases. This is because only M = 163 REXI terms
are involved in the computation and using more than
224 cores would only result in additional communica-
tion overheads and idling MPI ranks.

Regarding the competitiveness of REXI with small
time step sizes, we can consider e.g. the results with 14
cores and Dt= 0:01 for REXI. Using finite-differences
in space and RK4 in time, we can take a time step size
of about 0.0017 seconds. For this scenario, REXI is
competitive for time step sizes about 5.88 times larger
compared to RK4 time stepping methods.

6 HPC performance model

To develop a performance model for REXI, we sepa-
rate its phases into serial and parallelizable compo-
nents. A sketch is given in Figure 2. We recall the REXI
equation (23) given by

e(t�t0)LU (t)’
XN
n= 0

Re gn(tL+anI)
�1U (t0)

� �
We assume a constant problem size (resolution) for
each problem and denote the number of cores which
are used with C. An overview of all involved compo-
nents in the model is given in Table 2.

6.1 Broadcast sB

To spread the initial conditions U (t0), a broadcast is
used. Regarding the parallel communication time, we
assume a logarithmic run time for such operations and
denote this by sB log(C).

6.2 Precomputation sL and solver pL

On the first glimpse, the reduce operation over the sum
seems to be itself a purely parallelizable part. However,
we can precompute several components with the refor-
mulation to the Helmholtz problem (equation (38)). We
recall this equation here

Dh� k2h= r0

and can observe that the right-hand side given by r0 is
constant for each term in the REXI sum, and hence can
be precomputed. Therefore, such a precomputation
belongs to the serial part of our computations and we
denote this with sL. We would like to mention that pre-
computing these terms results in less scalability, but
improved overall performance. Solving the Helmholtz
problem itself and computing the velocities with the expli-
cit formulation can then be done in parallel since all terms
in the sum are entirely independent of each other. We
assume that the number of REXI terms can be evenly
spread across the computational resources and denote the
time to compute each term by pL (excluding the precom-
putable parts). Furthermore, we have to limit the paralle-
lizable part in case there are fewer REXI terms than the
number of computation resources available. Let the num-
ber of REXI terms be given by

W =M + L+ 1

which represents the independent systems of equations
which are to be solved.

A perfect load balancing of a workload W to C
would result ina run time of T }W=C. However, each
workload is assumed to be atomic, hence resulting in a
run time of T } W=Cd e. Furthermore, there is a limita-
tion C�W on the maximum number of cores which
yields T } W

min(C,W )

l m
. This finally yields

pW
W

min(C,W )

 �

Table 2: Description of parts in our performance model for the REXI parallelization (see section 6). C denotes the number of cores
and T(C) the run time for each specific part determined on the CoolMUC2 cluster. The last column contains the determined model
parameters s/p as discussed in Section.

Serial/parallel Description of computation/communication Run time in model component Performance model
parameter

Serial Computation:
Preprocessing for solving Helmholtz problems

TL(C) : = sL sL = 0:039167 s

Serial Communication:
Broadcast of initial conditions U(t0)

TB(C) : = sBlog(C) sB = 0:004985 s

Serial/parallel Communication:
Reduce operation over sum

TR(C) : = sRlog(C) sR = 0:011398 s

Parallel Computation:
Solving Helmholtz problem and compute velocities

TW(C) : = pW � W
min(C,W)

l m
pW = 0:036657 s
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for the massively parallel solver part pL.

6.3 Reduce operation sR

After all independent terms are solved, a reduce opera-
tion over an array of solutions is applied and we assume
a run time of sR log(C) for the reduce computations
and parallel communications.

The overall run time for computing one time step
with REXI on C cores, with REXI parameter M, is
then given by

T (C,M)= sL|{z}
serial part

+ sB log (C)+ sR log (C)|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
serial=parallel part

+ pW
W

min (C,W )

 �
|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

parallel part

ð46Þ

with pL = pW �W = pW � (M + L+ 1) describing the
total parallelizable workload for REXI parameter M.
The model parameters sL, sB, sR and pW are to be deter-
mined. A hybrid MPI+OpenMP parallelization and
parallelization-in-time only with finite-difference
discretization-in-space for M 2 f2048, 4096, 8192g is
used. The wall-clock times T (C) for each phase, listed
in Table 2, were measured separately. We computed
the performance model parameters from Table 2 by
inverting the corresponding equations. The parameters
which describe all models were then determined with a
weighted average. Since the number of cores for the
performance studies are not evenly distributed, using a
standard average would lead to a bias towards lower
number of cores. Therefore, we used a weight w(C,M)
for each parameter which is based on the reciprocal of
the total run time T (C,M), and hence

w(C,M)=

1
T (C,M)P
C

1
T (C,M)

Then, for example, the reduce parameter for all models
is computed via

pW =
X
C

p0W (C,M)w(C,M)

with p0W (C,M) the parameter computed for the study
on C cores and with REXI parameter M.

The times-to-solution are plotted for the measured
timings and the timings of our model in top image in
Figure 14. We can observe a very good match of our
model with the real measured timings. This model also
allows us to gain an insight into the behaviour of the
time-to-solution over a variety of REXI parameter M
and a significantly increased number of cores. Such

studies are given in the bottom image of Figure 14.
First, we can observe a very good scalability in the case
of very large REXI M. Second, we see a scalability lim-
itation given at the lowest extrema. This lowest extrema
also always matches the hard scalability limitation of
REXI given by C � M + L+ 1. At this extremum,
adding more cores would not result in a reduction of
the time-to-solution. We can also study the behaviour
of a large-scale system with this model in Figure 14 and
the scalability limitations are clearly observable by the
local extrema. Furthermore, these plots indicate a very
good scalability on already existing systems with 100k
cores. We can also see that communication required
for the broadcast/reduce operation is still not the limit-
ing part for 100k cores.

7 Summary and discussion

The parallel scalability of standard time stepping meth-
ods for oscillatory problems is limited due to the inher-
ently sequential nature of the time stepping algorithm.
This is particularly severe in the strong scaling limit,

Figure 14. Top: Comparison of the performance results and
the suggested model for the REXI parameters used in the finite-
difference simulation with a resolution of 1282. We see a close
matching of the performance model with the wall-clock time of
our simulations. Bottom: Application of the performance model
to generic parameters. We see an excellent scalability for large
REXI parameters M.
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where parallelization-in-space only does not lead to fur-
ther reductions in the run time. In this paper, we over-
came this issue by developing an inherently parallel
time stepping mechanism which is based on a rational
approximation of an exponential integrator (REXI).
Each of these problems can then be solved indepen-
dently on a parallel machine. Introducing this addi-
tional level of parallelism allows the system to be solved
on massively parallel machines.

Two new parameters, h andM, were introduced with
REXI. These are related to the accuracy and the novel
degree of time parallelism of the approach respectively.
We first conducted several numerical studies about h
and M and their relation to several simulation para-
meters such as the resolution, waves in the initial condi-
tion, linear stiffness, etc. These results allow us to
improve the understanding of this new parallelization
and we would like to briefly review one of the results.
An increase of the stiffness of the simulation would tra-
ditionally lead to an increase in the number of time
steps, and hence an increase in wall-clock time. In con-
trast, the REXI approach results in additional paralle-
lism, and hence has the potential to overcome the
strong scalability limitations by allowing us to use more
computing resources.

To show the feasibility of this concept on HPC sys-
tems, a variety of parallel performance benchmarks for
representative simulations were conducted. For the
parallel-in-time comparisons, the results clearly show a
significant reduction in the time-to-solution of 118:33
for spectral methods and 1503:03 for finite-difference
methods. For the spectral methods, we were also able
to gain results of higher accuracy with a time-to-
solution reduced by one order of magnitude. Since the
degree of parallelism is also based on the time step size,
we conducted time-to-solution studies with robust per-
formance improvements for varying time step sizes
compared to non-parallel-in-time studies.

With this new degree of parallelization, a model was
developed to improve the understanding of performance
limiting factors. This performance model shows a close
match with the measured data. Furthermore, we can
foresee a potential scalability also on 100k core systems
for the considered problems with an oscillatory stiffness
which would be otherwise strong scaling limited by their
low resolution of 1283 128 on a single compute node.

8 Outlook and future work

In our work we exploited the regular grid structure and
used a fast Helmholtz solver for efficiency reasons.
However, this solver is not always applicable, for exam-
ple, when unstructured grids are adopted. The strategy
presented in this paper is general enough so that any
preferred solution method for the linear solver could be

adopted. In case of locally refined grids, preconditioned
multigrid solvers (geometric or algebraic) are an inter-
esting possibility. Multigrid solvers have low memory
requirements, but may require several iterations if high
accuracy is needed. Direct solvers, such as those sug-
gested in Martinsson (2013), may require more data
storage. Overall, the matter of which solver is to be
used in the linear spatial problem still requires further
investigation, as it depends greatly on the specific dis-
crete domain to the used.

The extension of the method to non-linear hyper-
bolic equations is not necessarily straightforward. We
are investigating two strategies. One is to apply REXI
as part of asymptotic parallel-in-time (aPinT) (Haut
and Wingate, 2014), which is a combination of the
Parareal (Lions et al., 2001) scheme which assembles a
coarse propagator, which could be based on REXI for
the linear parts, and an averaging over the non-linear-
ities, which allows greater effectiveness of the parallel-
in-time method. The second strategy is a semi-
Lagrangian method which treats advective non-linear
parts in a Lagrangian sense.

We see parallelization-in-time, and methods such as
REXI, as new ways to exploit modern architectures.
For example, with the increasing sizes of vector regis-
ters, getting a vectorization in space is more and more
challenging. With parallel-in-time approaches, each
vector element can be used to run computations for
each independently treated problem in time, hence
resulting in a vectorization in the time domain rather
than in space as it is usually the case.
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Note

1 Here, we interpret Moore’s law via performance scaling.

References

Arakawa A and Lamb VR (1977) Computational design of

the basic dynamical processes of the UCLA general circu-

lation model. Methods in Computational Physics 17:

173–265.
Barros S, Dent D, Isaksen L, et al. (1995) The IFS model: A

parallel production weather code. Parallel Computing

21(10): 1621–1638.
Berry L, Elwasif W, Reynolds-Barredo J, et al. (2012) Event-

based Parareal: A data-flow based implementation of

Parareal. Journal of Computational Physics 231(17):

5945–5954.
Bonaventura L (2015) Local exponential methods: A domain

decomposition approach to exponential time integration

of PDEs. CoRR abs/1505.02248. Available at: http://arxiv.

org/abs/1505.02248. (accessed 01 June 2016).
Clancy C and Pudykiewicz JA (2013) On the use of exponen-

tial time integration methods in atmospheric models.

Tellus A 65: 1–16.
Cox S and Matthews P (2002) Exponential time differencing

for stiff systems. Journal of Computational Physics 176(2):

430–455.
Dennard RH, Rideout V, Bassous E, et al. (1974) Design of

ion-implanted MOSFET’s with very small physical dimen-

sions. Solid-State Circuits, IEEE Journal of 9(5): 256–268.
Embid PF and Majda AJ (1996) Averaging over fast gravity

waves for geophysical flows with arbitrary potential vorti-

city. Communications in Partial Differential Equations

21(3–4): 619–658.
Frigo M (1999) A fast Fourier transform compiler. SIGPLAN

Notices 34(5): 169–180.

Gander MJ (2015) 50 years of time parallel time integration.

In: Carraro T, Geiger M, Korkel S, et al. (eds) Multiple

Shooting and Time Domain Decomposition Methods: MUS-

TDD. Heidelberg, 6–8 May 2013, pp. 69–113. Cham:

Springer-Verlag.
Gander MJ and Guettel S (2013) PARAEXP: A parallel inte-

grator for linear initial-value problems. SIAM Journal on

Scientific Computing 35(2): C123–C142.
Garcia F, Bonaventura L, Net M, et al. (2014) Exponential

versus IMEX high-order time integrators for thermal con-

vection in rotating spherical shells. Journal of Computa-

tional Physics 264: 41–54.
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l’Académie des Sciences - Series I - Mathematics 332(7):

661–668.
Madec G (2014) NEMO ocean engine (Draft edition r6039).

Note du Pole de modelisation. Institut Pierre-Simon Laplace

(IPSL) 27: ISSN No 1288–1619. Available at: http://

www.nemo-ocean.eu/About-NEMO/Reference-manuals

(accessed 01 June 2016).
Martinsson PG (2013) A direct solver for variable coefficient

elliptic PDEs discretized via a composite spectral colloca-

tion method. Journal of Computational Physics 242:

460–479.
Moler C and Van Loan C (2003) Nineteen dubious ways to

compute the exponential of a matrix, twenty-five years

later. SIAM Review 45(1): 3–49.
Moore GE (2006) Cramming more components onto inte-

grated circuits. Reprinted from Electronics, volume 38,

number 8, April 19, 1965, pp. 114 ff. IEEE Solid-State Cir-

cuits Newsletter 3(20): 33–35.
Mozdzynski G, Hamrud M and Wedi N (2015) A partitioned

global address space implementation of the European cen-

tre for medium range weather forecasts integrated fore-

casting system. International Journal of High Performance

Computing Applications 29(3): 261–273.
Randall DA (1994) Geostrophic adjustment and the finite-

difference shallow-water equations. Monthly Weather

Review 122(6): 1371–1377.
Samaddar D, Newman D and Sanchez R (2010) Paralleliza-

tion in time of numerical simulations of fully developed

plasma turbulence using the Parareal algorithm. Journal of

Computational Physics 229(18): 6558–6573.

Schreiber M, et al. (2016) SWEET repository. Available at:

https://github.com/schreiberx/sweet. (accessed 01 June

2016).
Speck R, Ruprecht D, Krause R, et al. (2012) A massively

space-time parallel N-body solver. In: Proceedings of the

international conference on high performance computing,

networking, storage and analysis, Salt Lake City, Utah,

pp.92:1–92:11. Los Alamitos, CA, USA, IEEE Computer

Society Press.
Swarztrauber PN and Sweet RA (1996) The Fourier and cyc-

lic reduction methods for solving Poisson’s equation. In:

Schetz JA and Fuhs AE (eds) Handbook of Fluid Dynamics

and Fluid Machinery. New York, NY: John Wiley & Sons.
Wood N, Staniforth A, White A, et al. (2014) An inherently

mass-conserving semi-implicit semi-Lagrangian discretiza-

tion of the deep-atmosphere global non-hydrostatic equa-

tions. Quarterly Journal of the Royal Meteorological

Society 140(682): 1505–1520.

Author biographies

Martin Schreiber is a proleptic lecturer at the
University of Exeter (UoE) with the focus on high-
performance and scientific computing. He received his
doctoral degree (rer.-nat.) from the Technical
University of Munich (TUM), Germany. After a short

932 The International Journal of High Performance Computing Applications 32(6)



postdoctoral phase at TUM he joined UoE. He is
researching and publishing in a variety of areas such as
interactive computer graphics, run time steering of
simulations, dynamic adaptive mesh refinement,
dynamic resource management, algorithms for large
scale applications, hardware/software co-design,
hardware-aware optimizations of algorithms and
parallel-in-time methods with the focus on climate and
weather.

Pedro Peixoto is an assistant Professor (tenured) at the
Applied Mathematics Department of the University of
São Paulo, Brazil, since 2014. He obtained MS (2009)
and PhD (2013) degrees in Applied Mathematics from
the University of São Paulo, with part of the PhD
developed at the Isaac Newton Institute for
Mathematical Sciences, University of Cambridge, UK
(2012). He recently took a one year sabbatical as hon-
orary research fellow at the University of Exeter, UK
(2015). His main research interests are focused on com-
putational geophysical fluid dynamics, particularly on

mathematical methods for the next generation numeri-
cal weather and climate forecast systems.

Terry Haut is a staff member at Lawrence Livermore
National Laboratory, specializing in multiscale numeri-
cal methods for partial differential equations. He was
formerly a staff member at Los Alamos National
Laboratory, and worked on numerical methods for cli-
mate modelling, thermal radiative transfer, additive
manufacturing, and quantum chemistry. He did his
graduate work at the University of Colorado, Boulder,
in the Applied Mathematics department.

Beth Wingate is a professor of Mathematics at the
University of Exeter in the United Kingdom. Previous
to this she spent many years at the Los Alamos
National Laboratory in the United States. Her princi-
ple scientific interest is in the role of oscillations in fluid
dynamics and mathematics, in particular the dynamics
of the Arctic Ocean.

Appendix 1
Symbols for mathematical formulation

Symbol Description

U(t) Solution at time t
L Linear operator acting on U
I Identity matrix

Appendix 2
Symbols for shallow water equations

h Perturbation of surface height
�h Mean surface height constant
f Coriolis frequency
g Gravity acceleration constant
(u, v) Velocity components
d Divergence
z Vorticity

Appendix 3
Abbreviations for REXI

Symbol Description

h Specifies the sampling density in the
approximation of exp(ix) with a
Gaussian basis function

L Number of rational terms to
approximate Gaussian basis
function

M Number of Gaussian basis functions
used in the approximation of exp(ix)

NX3NY Spatial resolution of simulation
domain

t, dt Time step size for REXI
DT Overall simulation time
(vx,vy) Parameters related to the

wave-numbers of the initial
conditions
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