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Abstract
This work focuses on the Parareal parallel-in-time method and its application to the viscous Burgers equation. A crucial
component of Parareal is the coarse time stepping scheme, which strongly impacts the convergence of the parallel-in-time
method. Three choices of coarse time stepping schemes are investigated in this work: explicit Runge–Kutta, implicit–explicit
Runge–Kutta, and implicit Runge–Kuttawith semi-Lagrangian advection.Manufactured solutions are used to conduct studies,
which provide insight into the viability of each considered time stepping method for the coarse time step of Parareal. One of
our main findings is the advantageous convergence behavior of the semi-Lagrangian scheme for advective flows.

Keywords Parareal · Burgers’ equation · Semi-Lagrangian · Runge–Kutta · Parallel-in-time

1 Introduction

Keeping the time-to-solution for simulations below a given
wall-clock time plays a crucial role for a variety of appli-
cations such as wave propagation simulations in the area
of medical science, weather predictions to make forecasts
as accurate as possible [41], and early-warning systems
for Tsunamis to improve evacuation plans [6]. Over recent
decades one of the main factors to achieve improved results
of such simulations was by an increase in spatial resolution
(e.g. [43]). However, for time evolving problems increas-
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ing the spatial resolution also usually requires decreasing the
time step size, which again leads to an increase in workload
and this workload has to be finished within the same time
frame. A steady increase in computer clock speeds conve-
niently compensated for this additional workload. However,
this increase has stagnated since about 2004.1

Today, performance gains are no longer delivered for
free through increasing clock speed [38], but via addi-
tional parallelism at the instruction and core levels. However,
this yields increased communication and synchronization
overheads and makes performance gains for simulations
which already stagnated in their scalability very challeng-
ing. Performance improvements are in particular required
for simulations which have to be finished within a particular
time frame, and these simulations are the focus of this work.

Various kinds of approaches are currently under inves-
tigation to overcome such limitations. These range from
new hardware (networking, new instruction sets, broader
vector registers) to the software level (new algorithms for
latency hiding, optimized network stacks, parallel-in-time
methods). In this work, we concentrate on the software side
with parallel-in-time methods and its mathematical realiza-
tion to exploit resources beyond spatial scalability.

Parallel-in-time methods have gained a growing interest
over recent decades with a rich history [17]. A widely used

1 See http://www.top500.org statistics.
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and studied algorithm of this class is the Parareal algorithm
[27], which will be the algorithm of choice in this work.

A closely related approach is the PITA algorithm [14],
which adopts a slightly different correction scheme. Expand-
ing spectral deferred corrections methods [12] in a time-
parallel fashion leads to the PFASST algorithm [13]. Another
strategy is considering a pipeline parallel deferred correc-
tion framework, which leads to the RIDC scheme [9]. Also,
multigrid-type fashioned solvers have been investigated in
the context of parallel-in-time. The space-time multigrid by
[22] is a multigrid method which is applied to the whole
space-time domain. Applying a multigrid reduction to the
time dimension lead to the MGRIT algorithm [15]. Time
parallelism was introduced to the multigrid waveform relax-
ation [28] by using the partition method [40] and later on by
replacing the partition method with cyclic reduction [23].

Parallel-in-time algorithms have in common that they are
less efficient regarding the improved time-to-solution when
applied to realistic and dominantly hyperbolic problems.
These problems,mainly related to stability, have alreadybeen
investigated by multiple authors [14,16,32,35,37].

Various research shows that the convergence of parallel-
in-time algorithms is highly dependent on the coarse time
stepper used within the algorithms [3,19].

In this work, we study the dependency of different coarse
time stepping schemes with respect to the efficiency of a
parallel-in-time algorithm applied to the viscous Burgers
equation, described in Sect. 2. Burgers’ equation is a simpli-
fied fluid model frequently used in the development stages
of solvers for the Navier–Stokes equations, being particu-
larly relevant for flows with high Reynolds numbers (small
viscosities). It is simple enough to allow more detailed the-
oretical and experimental analyses, but at the same time
sufficiently sophisticated in terms of representing one part
of the complex non-linear phenomena of fluid dynamics.

For high Reynolds numbers, Burgers’ equation is domi-
nated by advection (dominantly hyperbolic), which creates
challenges for parallel-in-time schemes. To overcome stabil-
ity and convergence issueswhile ensuring sufficient accuracy
with large time steps, we investigate the use of semi-
Lagrangian schemes for the non-linear advection part of
the problem (see Sect. 4.4). Semi-Lagrangian schemes are
widely used in the geophysical fluid dynamics community
[36], mainly due their property of allowing time step sizes
beyond Eulerian CFL limitations. Apart from a couple of
suggestions of its benefits to parallel-in-time frameworks
[10,31], it appears to be a potentially promising scheme to
be investigated.

Our parallel-in-time algorithm of choice is the Parareal
algorithm, which is explained in Sect. 3. We combine the
semi-Lagrangian scheme for the coarse time-integrator of a
Parareal algorithm and compare this approach to standard
time integrators (explicit and implicit–explicit Runge–Kutta

methods), as described in Sect. 4. Additionally, the applica-
tion of the semi-Lagrangian method requires modifications
of the communication patterns in the Parareal algorithm as
depicted in Sect. 5. The results of all numerical experiments
are summarized in Sect. 6. Finally, a conclusion is drawn in
Sect. 7.

2 Burgers’ equation

The Navier–Stokes equations are the fundamental equations
for many problems in computational fluid dynamics (CFD)
[42]. Here, in particular flow problems with high Reynolds
numbers (high ratio between advection and diffusion) lead
to a dominantly hyperbolic problem. This poses particular
challenges for Parareal and leads to a decrease in the Parareal
convergence rate [35]. In this work, we put the focus on the
part of theNavier–Stokes equationswith highReynolds num-
bers which can be expressed by the viscous Burgers equation
with small viscosities. This allows us to put the focus on this
particular effect for convergence studies with Parareal.

The viscous Burgers equation was introduced by [5] and
extensively studied by Burgers (e.g. [8]). The close rela-
tion of these equations can be seen easily by starting from
the momentum conservation equation of the incompressible
Navier–Stokes equations

∂u
∂t

+ (u · ∇) u = − 1

ρ
∇ p + ν∇2u + 1

ρ
F, (1)

where u denotes the velocity, ρ the density, p the pressure, ν
the kinematic viscosity, and F the external forces. By drop-
ping the pressure and external forces, we avoid coping with
the mass conservation equation. This leads to the viscous
Burgers equation

∂u
∂t

+ (u · ∇) u = ν∇2u. (2)

For a better presentation of the results, we use only one
dimension in space leading to

∂u

∂t
+ u

∂u

∂x
= ν

∂2u

∂x2
+ Q, (3)

where Q is a forcing term. Analytic solutions of Burgers’
equation exist for some special cases [42], but, in this work,
we apply manufactured solutions using the source term Q.

123



A numerical study of a semi-Lagrangian Parareal method applied to the viscous Burgers equation 47

3 Parareal

The Parareal algorithm was first presented by [27] and has
gained steadily increasing interest. This section provides a
short introduction to the idea and the algorithm itself.

Weare interested in thenumerical solutionof an autonomous
system. For the sake of simplicity, we consider this to be an
ordinary differential equations (ODE),

du
dt

= f (u), with u(t0) = u0, (4)

where f (u) is a Lipschitz continuous function.
Using the Parareal algorithm for this ODE requires two

different time stepping methods with different time step
sizes: a fine time step Δt and a coarse time step ΔT .
The fine time stepping integrator is denoted by the func-
tional F(un, tn, tn+1), and it uses many small time steps
Δt within a period of a large time step ΔT between tn and
tn+1 = tn + ΔT . Usually, an accurate state-of-the-art time
integrator is adopted as the fine time stepping scheme. These
are naturally sequential in time resulting in limitations with
respect to the time-to-solution.

The idea of Parareal is to split the time domain [t0, T ]
over which Eq. (4) is to be solved into multiple time slices,
each of size ΔT , and to compute the numerical solution on
those slices in parallel. In order to do this, an initial condi-
tion is required for each time slice [tn, tn+1], and the parallel
solution will only give adequate results if this initial condi-
tion agrees with the final condition obtained in the previous
time slice. An estimator is used to predict these initial values
for each slice with a coarse propagator C(un, tn, tn+1). This
coarse propagator has to be able to cope with large time steps
(of size ΔT ) and should take significantly less computation
time than the fine time stepping method.

Accurate results are obtained considering an iterative
scheme, using the coarse integrator as prediction and the fine
integrator as correction, where the fine integrator can run in
parallel. Starting with the initial conditions u00 the resulting
iteration can be written as

uk+1
n+1 = C(uk+1

n ) + F(ukn) − C(ukn) (5)

for time step tn to tn+1, where the superscripts k refer to the
iterations of the scheme [2]. The pseudocode representation
of the scheme is given in Algorithm1.

Based on the accuracy and smoothness of the fine and
coarse integrators, it is possible to estimate analytical upper
bounds of the error achieved after a certain number of itera-
tions [3,18].

Clearly, if the number of iterations is equal to or exceeds
the number of time slices, then no acceleration is gained.
Additional overhead due to the execution of the coarse prop-

U0
0 ← Ũ0

0 ← u0
for n = 1 to N do

Ũ0
n ← C (

U0
n−1

)

U0
n ← Ũ0

n
end
while |Uk

n − Uk−1
n | > ε ∃n do

Uk
0 ← u0

for n = 1 to N do

Ûk−1
n ← F

(
Uk−1
n−1

)
// Parallel step

end
for n = 1 to N do

Ũk
n ← C (

Uk
n−1

)
// Predict

Uk
n ← Ũk

n + Ûk−1
n − Ũk−1

n // Correct
end

end

Algorithm 1: Pseudo code of the Parareal algorithm. C and
F denote the coarse and fine solver respectively. The initial
condition is u0, Uk

n denotes the solution at iteration k and

time point tn . The solutions of C and F are Ũ
k
n and Û

k
n

respectively.

agator and communication would even lead to an increase
in wall-clock time compared to a non-Parareal execution.
Therefore, two requirements have to be met for this method
to gain a speedup:

1. The coarse solver C needs to take substantially less wall-
clock time than the fine solver F per time slice, by
adopting either a reduced order method (with reduced
cost) and/or very large time step sizes.

2. The Parareal algorithm needs to take far fewer iterations
than the number of time slices, which are computed in
parallel.

These two requirements are typically in contradiction to each
other. This poses the main challenge of finding an adequate
coarse propagator. The challenge is highly problem specific,
and ODEs of different nature can require different schemes.

4 Time steppingmethods

In this section, we describe the numerical schemes used in
the numerical studies for the Parareal method. All the meth-
ods have in common at least a 1st order scheme (in time
and space) for the diffusive part and the forcing term, and
a 2nd order scheme (in time and space) for the advective
term. A special focus lies on the semi-Lagrangian formula-
tion. Table1 summarizes the schemes employed.
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Table 1 Summary with description and accuracy of the schemes used in this work

Scheme Spatial approximations Time stepping Reference equations

Advection Diffusion Advection Diffusion

Explicit Spec (expl) Spec (expl) RK2 O(Δt2) (expl) Euler O(Δt) (expl) (6), (7)

IMEX Spec (expl) Spec (Helm) RK2 O(Δt2) (expl) Euler O(Δt) (impl) (11), (12), (13)

SL Interp O(Δx2) Spec (Helm) SETTLS O(Δt2) (expl) Euler O(Δt) (impl) (22), (23), (24)

“Spec” refers to spectral differentiation, “expl” and “impl” refer to explicit and implicit schemes, respectively. “Helm” refers to the requirement of
solving a definite Helmholtz equation. “Interp” refers to interpolation schemes, which are of order 2 or higher

4.1 Spatial discretizations

The primary aim of this study is to investigate effects of the
time-integration scheme, so we will adopt accurate spectral
methods for the spatial discretizations when possible.We use
the periodic Fourier basis to represent the solution in spectral
space (see e.g. [11]).

Therefore, all linear operators are directly applied element-
wise in spectral space with spectral accuracy. For functions
exactly represented in the spectral space with a given number
of modes, the error of the linear operator is of the same order
of magnitude as the round-off errors.

The non-linear terms could, in principle, be calculated in
spectral space with a convolution of all spectral series, which
would be of quadratic complexity. To avoid this complexity,
a pseudo-spectral approach is usually adopted [4,20], where
the non-linearities are computed node-wise in physical space.
This can lead to spurious modes, and a standard anti-aliasing
technique is applied to overcome this, in which a higher res-
olution in physical space followed by a truncation of modes
in spectral space is used after each non-linear operation (see
e.g. [30]).

Using a Fourier spectral basis also provides advantages for
the solution of linear systems, which usually correspond to
a definite Helmholtz equation [see Eqs. (13), (24)]. This can
be solved accurately and efficiently with an element-wise
vector-vector multiplication in spectral space (see e.g.[33,
39]).

4.2 Explicit Runge–Kutta

The simplest method we use for our study is a two stage
explicit Runge–Kutta (RK) method [26]. To reach the afore-
mentioned orders, we use the midpoint rule for the advective
part of Eq. (3) and a 2-stage explicit Euler method for the
diffusive part and the forcing term. This results in

u1 = un + Δt

(
ν
∂2un

∂x2
+ Qn

)
− Δt

2
un

∂un

∂x
, (6)

un+1 = un + Δt

(
ν
∂2u1
∂x2

+ Q1 − u1
∂u1
∂x

)
, (7)

where u1 denotes the intermediate solution of stage one, and

Q1 is evaluated at tn+ 1
2 . This scheme is 2nd order accurate

in time for the non-linear advection term and 1st order for
the linear terms.

4.3 Implicit–explicit Runge–Kutta

In this section, we recap the idea behind implicit–explicit
(IMEX) Runge–Kutta methods. For further information the
reader is referred to e.g. [1,24]. The IMEXmethods are based
on the idea that terms with different stability restrictions are
treated accordingly.The stiff (linear) terms are treated implic-
itly, and the non-stiff (non-linear) terms are treated explicitly.
Following the algorithm of [1], we use the explicit midpoint
rule for the non-stiff terms and the implicit Euler for the stiff
terms. Given the equation

du
dt

= f (u) + g(u), with u(t0) = u0, (8)

where f is a linear stiff term, and g is a non-linear term,
discretization in time yields

u1 = un + Δt f (u1) + Δt

2
g(un) (9)

un+1 = un + Δt( f (u1) + g(u1)), (10)

wherewe integrate from tn to tn+1 with a time step ofΔt . The
implicit treatment of the stiff term in Eq. (9) ensures that it
imposes less stability restrictions on the time step size for the
stiff term; however, it introduces larger phase and amplitude
errors for larger time steps (see [11]).

Applying the scheme to the viscous Burgers equation [see
Eq. (3)] and treating the forcing term implicitly yields

u1 = un + Δt

(
ν
∂2u1
∂x2

+ Q1

)
− Δt

2
un

∂un

∂x
, (11)

un+1 = un + Δt

(
ν
∂2u1
∂x2

+ Q1 − u1
∂u1
∂x

)
, (12)

where Q1 is evaluated at tn+ 1
2 .
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Using the implicit Euler step in this two stage scheme
leads to an explicit handling of the diffusion in the second
stage. This yields conditional stability for diffusion domi-
nated problems. A von Neumann analysis of this scheme
applied to the linearized equation shows a larger stability
region than the fully explicit scheme.

Equation (11) can be written as a definite Helmholtz prob-
lem of the following form

(
I − Δtν

∂2

∂x2

)
u1 = un − Δt

2
un

∂un

∂x
+ Δt Q1, (13)

where I is the identity operator.

4.4 Semi-Lagrangian formulation

Semi-Lagrangian schemes are frequently and successfully
used in geophysical fluid dynamics as a way to obtain an
increase in the time step size for advection dominated prob-
lems [36], which inspired this investigation with Parareal.
In this section, we review the semi-Lagrangian formulation
used for thiswork. For a comprehensive introduction to semi-
Lagrangian schemes we refer the reader to [7,11].

The basic idea behind the semi-Lagrangian method is to
use a Lagrangian formulation of the equation with respect
to a fixed Eulerian grid. In the Eulerian framework, an
observer at a fixed position observes an entitymoving past the
observer. The Lagrangian formulation implies an observer
which moves with the observed entity, which means that the
computational grid alsomoves through space over time.With
a semi-Lagrangian framework, the Lagrangian framework is
used for the particle movement, however, the simulation data
is stored on an Eulerian grid. Values for the particle grids are
then interpolated on the Eulerian grid.

Since with this scheme we resolve the Lagrangian tra-
jectory, the numerical domain of dependence includes the
physical domain of dependence, which ensures the fulfill-
ment of a necessary condition for unconditional stability
(independent of the time step size) with respect to the advec-
tion term. Therefore, using a stable trajectory calculation
scheme, the time step size will not be restricted by the
CFL stability condition (which limits both RK and IMEX
schemes), but will only be restricted to accuracy conditions.

Burgers’ equation can be written within a Lagrangian
framework using the concept of total or material derivatives,

du(t, x(t))

dt
= ∂u

∂t
+ ẋ(t)

(
∂u

∂x

)
= ∂u

∂t
+ u

∂u

∂x
, (14)

where d
dt denotes the total derivative and the velocity ẋ(t) =

u(t, x(t)). Therefore, the Lagrangian formulation of Burg-

ers’ equation reads

du

dt
= ν

∂2u

∂x2
+ Q. (15)

For a backward Euler time integration we get

u(tn+1, x(tn+1)) − u(tn, x(tn))

Δt

= ν
∂2u

∂x2
(tn+1, x(tn+1)) + Q(tn+1, x(tn+1)). (16)

The velocity for time step tn+1 is stored at grid points
defined as x(tn+1). The set of grid points defined at time
tn+1 are commonly denoted as the arrival points xa . The key
point now is to estimate x(tn+1/2) and x(tn), which are called
midpoints xm and departure points xd , respectively. These
points can be obtained by solving the Lagrangian trajectory
ODE

dx(t)

dt
= u(t, x(t)), (17)

which when integrated within (tn, tn+1) results in

xa − xd =
∫ tn+1

tn
u(t, x(t)) dt . (18)

Discretizing the integral with the midpoint rule yields

xa − xd = u(tn+1/2, xm)Δt . (19)

Next, the required velocity at a future intermediate step
u(tn+1/2, xm) can be computed by extrapolation. Choosing
this extrapolation carefully is important in order to avoid
possible instabilities of the scheme (see [11]). We choose
the stable extrapolation two-time-level scheme (SETTLS)
proposed by [21], which calculates the velocity using infor-
mation from a previous time step tn−1 as

u(tn+1/2, xm) ≈ Δt

2
(2u(tn, xd) − u(tn−1, xd) + u(tn, xa)).

(20)

Joining Eqs. (20) and (19) one obtains a non-linear implicit
equation for the unknown xd , which can be solved with an
iterative scheme (index k) as

xk+1
d = xa − Δt

2
(2u(tn, x

k
d )− u(tn−1, x

k
d )+ u(tn, xa)) (21)

with initial guess x0d = xa .
We adopt a stopping criterion of maximum absolute dis-

tance between departure points obtained from two iterations
of ε = 10−8 with a maximum of 10 iterations. Generally,

123



50 A. Schmitt et al.

the maximum number of iterations is not reached, since only
a few iterations are typically enough to obtain the departure
points very accurately. Within the iterative procedure, it is
required to calculate the velocity at non-grid points. These
values are obtained through 2nd order bilinear interpolation
with respect to the nearest grid points [36].

Denoting (·)∗ as the value of a field interpolated to its
respective departure points we can write the iteration as

xk+1
d = xa − Δt

2
u(tn) − Δt

2
(2u(tn) − u(tn−1))∗. (22)

Using the same notation, but now ignoring the subscript a,
we can apply the semi-Lagrangian formulation to the discrete
Burgers equation (Eq.16) resulting in

un+1 = un∗ + Δtν∇2un+1 + Δt Qn+1. (23)

Reformulating Eq. (23), and ignoring the forcing, leaves us
with

(
I − νΔt∇2

)
un+1 = un∗, (24)

which is again a definite Helmholtz problem [like Eq. (13)].
This notation also shows that it is possible to solve the semi-
Lagrangian formulation in two steps. First, the departure
points need to be estimated, and the velocity at the cur-
rent time step must be interpolated to these points. Next,
these interpolated values are used in the right-hand-side of
the Helmholtz problem, which is solved with the aid of an
accurate and efficient spectral solver.

All interpolations at the departure points are done with
4th order accuracy (bicubic interpolation), which combined
with the bilinear interpolation of the velocities ensures an
overall 2nd order accurate scheme with respect to advection
(see [29]).

5 Communication patterns in Parareal with
SL

The 2nd order semi-Lagrangian scheme, see Sect. 4.4, poses
either additional requirements on the communication of
Parareal with additional interfaces required, or an increase
in memory used. Since this plays an important role for future
parallel implementations and efficiency, we discuss this in
more detail.

Expanding the standard Parareal algorithm (Algorithm1)
with the two steps used for solving the semi-Lagrangian
scheme leads to the SL-Parareal Algorithm2, where all
changes are underlined. Here, we see the additional velocity
Uk∗ at the departure points necessary for the semi-Lagrangian
formulation. Depending onwhether Parareal communication

U0
0 ← U0−1 ← Ũ0

0 ← u0
for n = 1 to N do

U0∗ = SL (
U0
n−1,U

0
n−2

)

Ũ0
n ← C

(
U0∗

)

U0
n ← Ũ0

n
end
while |Uk

n − Uk−1
n | > ε ∃n do

Uk
0 ← Uk−1 ← u0

for n = 1 to N do

Ûk−1
n ← F

(
Uk−1
n−1

)
// Parallel step

end
for n = 1 to N do

Uk∗ = SL (
Uk
n−1,U

k
n−2

)

Ũk
n ← C

(
Uk∗

)
// Predict

Uk
n ← Ũk

n + Ûk−1
n − Ũk−1

n // Correct
end

end
Algorithm 2: Pseudo code of the SL-Parareal algorithm,
where the semi-Lagrangian formulation with SETTLS is
used as the coarse solver. Parts added to the standard
algorithm are underlined. U denotes the solution of the
algorithm, Ũ denotes the solution of the coarse solver and
Û denotes the solution of the fine solver. The superscript k
stands for the Parareal iteration, the index n for the time step
and the index ∗ for the evaluation at the departure point.

is realized on a shared or distributed memory system, dif-
ferent ways exist to handle this additional velocity at the
departure points.

1. In a shared memory or partitioned global address space
(PGAS) Parareal environment the velocity Uk∗ can be
stored as a new variable and can be made directly acces-
sible with a pointer.

2. In a distributed memory Parareal environment additional
communication is necessary, as described below.

Even though the code used for this work is only serial, the
realization is done in a fashion which resembles the commu-
nication on distributed memory systems. Here, we target the
investigation of parallel-in-time algorithms for large systems.

In our implementation each time slice has its indepen-
dent memory areas. For the standard Parareal algorithm, we
send the result of time slice Tn−1 = [tn−2, tn−1] as initial
condition to time slice Tn = [tn−1, tn]. The SL-Parareal
scheme requires additionally sending the result of time slice
Tn−2 = [tn−3, tn−2]. Due to overwriting Uk

n−1 with Uk∗ in
time slice Tn−1 to reduce memory consumption the data is
received from Tn−2.

A sketch for the new data dependencies, which shows
the additionally required communication, is shown in Fig. 1.
Here, the communicationduring the serial prediction-correction
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Uk
1

Uk
2

Uk
3

· · ·

T1 T2 T3 T4
Uk

1

Uk
2

Fig. 1 Sketch of the communication pattern for the prediction and cor-
rection step (as boxes) of the distributed memory Parareal algorithm in
iterations k with the semi-Lagrangian formulation applied to the coarse
solver. The time slices are denoted by Tn = [tn−1, tn]. Arrows show the
communication of the velocity Uk

n (solid: standard Parareal; dashed:
additional for SL-Parareal)

step is indicated by the arrows. The dashed red arrows visual-
ize the additional communication necessary for the 2nd order
SL-Parareal scheme used in this work.

6 Numerical experiments

We conducted various numerical experiments which exploit
different challenges for the Burgers equations. First, we
describe our benchmarking test cases followed by a stabil-
ity study of serial time stepping for the numerical methods
presented in Sect. 4. This is followed by an examination of
these different methods in combination with the Parareal
algorithm.

For the sake of reproducibility, we have published the
source code for all aforementioned methods in the reposi-
tory [34] of the SWEET development.

6.1 Benchmarks

The test cases are based on [25] and mimic turbulent fluid
flows at high Reynolds numbers modeled through multiple
length scales.

Both benchmarks are based on the method of manufac-
tured solutions. This means we define a solution u(x, t) to
calculate the source term Q of Eq. (3), followed by using
the calculated source term and the initial condition u(x, t0)
in the solver. The analytical solution is then used for error
comparisons. The benchmarks have in common that they are
carried out on the space-time domain (x, t) ∈ [0, 1]2.

We next describe parameters, which are specific to the
Parareal studies. Themaximumabsolute difference (in space,
for all times) between two Parareal iterations is used to evalu-
ate the convergence of the Parareal algorithm, and a tolerance
of tol = 10−8 is used as a stopping criterion. The Parareal
studies are executedwith a time discretization ofΔT = 10−2

and Δt = 10−6 for the coarse and fine solver, respectively.
Such large ratios ΔT /Δt are typically more challenging.
Each coarse time step represents one time slice leading to a

0
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1−1

0
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x
t
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Fig. 2 Analytical solution u of benchmark B1 over the computational
domain (x, t) ∈ [0, 1]2

total number of NT = 100 time slices in the time interval
[0, 1].

For Parareal we use IMEX as the fine solver and one of the
three time stepping methods (RK, IMEX, SL) as the coarse
solver. We refer to the different combinations by their coarse
solver. IMEX was chosen as the fine integrator for all exper-
iments as it provides 2nd order accuracy in time at smaller
cost compared to the SL scheme, and the stability constraints
on Δt are smaller compared to RK.

6.1.1 B1: Sinusoidal waves

For our first benchmark (B1) the defined solution

u(t, x) = sin(2πx) sin(2π t)+ 1

k
sin(2πkx) sin(2πkt) (25)

consists of a sum of two sinusoidal waves, where k denotes
an arbitrary frequency. We fix the frequency to k = 3. A
visual representation of the solution over the computational
domain is given in Fig. 2.

We use this benchmark for both a serial and a Parareal
study. Therefore, we split B1 further in two subcases:

(a) For the serial study, used to investigate the stability of
the time stepping schemes, we use the discretization
of the spatial domain with N ∈ {42, 85, 170} spectral
modes, corresponding to a spatial discretization width of
Δx ∈ {1/64, 1/128, 1/256}, and the time domain with
step sizes of Δt ∈ {10−4, 10−3, 10−2}. For the viscosity
we study the values ν ∈ {0, 10−4, 10−3, . . . , 1}.

(b) In the Parareal study, used to analyze the coarse propaga-
tors in a parameter region found by (a), we use N = 170
spectral modes in space, which corresponds to a spatial
discretization width of Δx = 1/256. The viscosity is
chosen from the set ν ∈ {n × 10−3|n ∈ {1, 2, . . . , 10}}.
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Fig. 3 Analytical solution u of benchmark B2 over the computational
domain (x, t) ∈ [0, 1]2

6.1.2 B2: Transport of a wave over time

The second benchmark (B2) is based on the smoothed saw-
tooth function used in [25], which is described by the finite
series

u(t, x) = 1

2

kmax∑

k=1

sin(2πkx − πkt + πk)Φ(k, ε), (26)

with

Φ(k, ε) = ε

sinh( 12επk)
(27)

being a smoothing function used to suppress the amplitudes
of high wave numbers. The parameters in this work are set to
kmax = 3 and ε = 0.1. This choice results in a transport of a
wave over time (see Fig. 3). The spatial domain is discretized
with N = 170 spectral modes (spatial discretization width
Δx = 1/256). The studies are conducted with viscosities of
ν ∈ {n × 10−4, n × 10−3|n ∈ {1, 2, . . . , 10}}.

6.2 Stability study of serial time stepping

We start with a stability study considering the settings of
Benchmark B1 in order to get a general idea of time step lim-
its for each scheme described in Sect. 4. These studies also
illustrate the time step limitations, which motivate the devel-
opment of parallel-in-time methods. The results are given
in Table2. Parameter combinations which lead to a stable
computation are marked with a check mark. Unstable com-
putations are indicated by ’X’.

The results for the fully explicit RK scheme are shown in
the first row of tables. For all of the three time step sizes,
we see instabilities for diffusion dominated problems. Only
with the coarsest time step size can an unstable behavior be
observed in the advection dominated parameter region (small
viscosities).

Table 2 Results of the serial time stepping stability study with the RK,
IMEX and SL scheme for all parameter combinations

Δt = 10−4 Δt = 10−3 Δt = 10−2

ν\N 42 85 170 ν\N 42 85 170 ν\N 42 85 170

RK

0 � � � 0 � � � 0 � X X

10−4 � � � 10−4 � � � 10−4 � X X

10−3 � � � 10−3 � � � 10−3 � � X

10−2 � � � 10−2 � � X 10−2 X X X

10−1 � � X 10−1 X X X 10−1 X X X

1 X X X 1 X X X 1 X X X

IMEX

0 � � � 0 � � � 0 � X X

10−4 � � � 10−4 � � � 10−4 � X X

10−3 � � � 10−3 � � � 10−3 � � �
10−2 � � � 10−2 � � � 10−2 � � �
10−1 � � � 10−1 � � � 10−1 � � X

1 � � � 1 � � � 1 � � X

SL

All stable All stable All stable

Checkmarks indicate a stable calculation and unstable calculations are
indicated with ’X’

Comparing these results with the results given in the sec-
ond rowof tables, corresponding to the IMEXscheme,we see
the impact of treating the diffusive stiffness with an implicit
time discretization, hence reducing the stability restrictions
of this term. Therefore, we see fewer parameter combinations
which are unstable in the diffusion dominated region. Since
the explicit discretization of the advective part is the same as
with the RK scheme, we get the same stability behavior in
the advective region.

All parameter combinations with the SL formulation lead
to a stable computation, so it is only constrained by its accu-
racy. This shows the potential of the SL formulation as a
coarse time stepper for parallel-in-time schemes, as larger
coarse time steps are possible. As SL schemes accurately
handle advection, this is also particularly relevant for advec-
tion dominated problems.

6.3 Parareal B1: Sinusoidal waves

In this section, we apply the Parareal algorithm to the first
benchmark case (B1) described in Sect. 6.1.

First, we compare the three different time stepping scheme
combinations within the Parareal algorithm at a moderate
viscosity. Second, we investigate IMEX and SL in greater
depth to examine awider rangeof viscosities and the behavior
with advection dominated flows. Finally, we take a look at
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the influence of the time step size of the coarse solver on the
convergence behavior of the Parareal algorithm.

6.3.1 Comparison of the time stepping schemes

We compare the coarse solvers RK, IMEX, and SL with
respect to their stability within the Parareal algorithm. The
settings of B1 are applied with the exception that we use only
a fixed viscosity of ν = 10−2.

In Fig. 4 the maximal absolute error of the spatial domain
between the numerical and analytical solution εmax =
max(|u − u|) is plotted over the time domain for the first
four Parareal iterations. Additionally, εmax calculated with
thefine time stepping scheme in serial is plottedwith a dashed
line.

Figure4a shows in each iteration a diverging behavior of
the coarse solverRKafter a few time slices,which propagates
into the solution. This is expected becauseRK is not stable for
the parameter set of B1, see Sect. 6.2. For this reason we skip
RK in all further calculations. Even though, the coarse solver
diverges within each iteration of the Parareal algorithm, the
algorithm converges finally after k = 100 iterations. This is
exactly the number of time slices and, therefore, the maxi-
mum expected number of iterations [2], since the fine solver
has passed through all slices as a serial algorithm.

In comparison to RK, the coarse solver IMEX shows
a good approximation of the solution already in the first
Parareal iteration, see Fig. 4b. Further iterations show a fast
convergence for the first 23 time slices to the error of the fine
solver on the order of εmax = O(10−7). For the other time
slices the error increases in each iteration resulting from a
divergent behavior of the coarse solver. This shows that sta-
ble coarse and fine solvers do not ensure stability over all
Parareal iterations. The Parareal algorithm converges to the
serial fine solution within the pre-set tolerance after k = 100
Parareal iterations, as expected.

Finally, Fig. 4c shows the results for SL. In contrast to
both previous coarse solvers SL is stable over the whole
time domain for each iteration. Due to this we can see a
fast convergence to the serial fine solution uniformly over
the whole time domain. After just four iterations the error is
visually nearly indistinguishable from the error of the serial
fine solution. The preset tolerance of the Parareal algorithm
leads to fulfilling the convergence criterion after k = 9 itera-
tions. Additionally, we have included the serial fine solution
of the SL scheme (dash-dotted) to underline the motivation
for the choice of IMEX as the fine time stepping scheme
of the Parareal algorithm. The large error of the SL method
is caused due to its dependency on its spatial discretization
errors, which are not of spectral accuracy.
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Fig. 4 Maximal absolute error between numerical and analytical solu-
tion εmax = max(|u−u|) plotted over the time domain for combinations
of the fine F solver IMEX and three different coarse C solvers of the
Parareal algorithm. Given are the errors for the first four Parareal itera-
tions k and the error of F . a C: RK, b C:IMEX, c C: SL

6.3.2 Influence of the SL on the advective problem

We investigate the influence of the semi-Lagrangian formu-
lation on the convergence behavior of the Parareal algorithm
applied to advective problems. To reach this goal we now use
the set of viscosities described in benchmark B1.

In Fig. 5 the error εmax is shown against the time domain
for some of the viscosities ν. In the case of IMEX we show
iterations 1, 2, 40 and 80 of the Parareal algorithm. We can
observe a stable behavior of the coarse solver for ν ≥ 0.002
in the first Parareal iteration. The second iteration shows
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Fig. 5 Maximal absolute error between numerical and analytical solu-
tion εmax = max(|u−u|) plotted over the time domain for the Parareal
iterations k ∈ {1, 2, 40, 80}. Fine F and coarse C solver of the used

Parareal algorithm is IMEX. Given are the errors for chosen viscosities
of the set ν ∈ {n × 10−3|n ∈ {1, 2, . . . , 10}}. a k = 1, b k = 2, c
k = 40, d k = 80

increasing errors for all ν with already unstable behavior
of the coarse solver for ν ≥ 0.008. None of these calcula-
tions shows a rapid convergence with Parareal, as k ≥ 97
iterations are necessary to reach the desired tolerance. Itera-
tions 40 and 80 show how the solution of the fine solver is
propagated one time slice per iteration.

Studies for SL are provided in Fig. 6. Here, only the first
two iterations are visualized since a sufficient approximation
to the solution is already obtained. First of all, we observe
a stable behavior for the coarse solver with all examined
viscosities. The SL scheme stably solves the advection part
without bounds on the CFL number independent of possi-
ble (large) errors in the velocity caused by the large time
step size used in the coarse propagator. Also, the velocities
and trajectories are calculated using averaged (interpolated)
velocities, which smooths out near-grid scale velocity varia-
tions, which are usually responsible for instabilities [11]. On
the other hand, the IMEX scheme is very sensitive to veloc-
ity variations, especially for very small viscosities, since no
smoothing is used.When large time steps are used inParareal,
large errors in velocity are expected, particularly at the end
of the time frame. Such errors may cause the CFL number
bounds to be violated, and, therefore, the solutions do not
contain the information of their domain of dependence. This
can naturally drive the numerical solution away from the
expected one.

We also notice in Fig. 7, where the total error of the
space-time domain is plotted over the first three iterations,
an equally fast convergence for all different viscosities from
iteration one to two. Between iteration two and three the error
for the calculations with the larger viscosities is reduced less
than for the smaller viscosities, in the end leading to one
additional iteration needed for convergence for ν = 0.01.
For all SL experiments performed in the test case the algo-
rithm converged within k ≤ 9 iterations, which corroborates
the statement made in Sect. 6.2 that a SL formulation has
potential as an efficient coarse solver (fast convergence and
cheap compared to the fine time stepper) for parallel-in-time
methods.

Additionally, we want to mention that the Parareal algo-
rithm converges to the fine solution with SL for even smaller
viscosities up to ν = 0. The number of iterations until
convergence increases gradually with decreasing viscosities.
Convergence is reached with k = 12 Parareal iterations for
ν = 0.0001, k = 16 iterations with ν = 0.00005 and k = 23
iterations with ν = 0.

6.3.3 Influence of the coarse time step size on the
convergence of Parareal

In this section, we study the influence of the coarse time step
size ΔT on the convergence of the Parareal algorithm.
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Fig. 6 Maximal absolute error between numerical and analytical solu-
tion εmax = max(|u−u|) plotted over the time domain for the first two
Parareal iterations k. Fine F and coarse C solver of the Parareal algo-

rithm are IMEX and SL, respectively. Given are the errors for chosen
viscosities of the set ν ∈ {n × 10−3|n ∈ {1, 2, . . . , 10}}. a k = 1, b
k = 2
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Fig. 7 Total error εtot of the space-time domain of each iteration k
of the Parareal algorithm plotted over iterations 1, 2, and 3 for chosen
viscosities of the set ν ∈ {n × 10−3|n ∈ {1, 2, . . . , 10}}. Fine F and
coarse C solver are IMEX and SL, respectively

Table 3 Number of iterations to convergence of the Parareal algorithm
with F :IMEX and C as noted in the table for two different viscosities
and four different time step sizes of the coarse solver applied to B1

ν ΔT C: IMEX C: SL

0.005 1 × 10−2 99 8

0.005 5 × 10−3 5 6

0.005 2.5 × 10−3 4 4

0.005 1.25 × 10−3 3 4

0.01 1 × 10−2 100 9

0.01 5 × 10−3 32 6

0.01 2.5 × 10−3 4 5

0.01 1.25 × 10−3 3 4

The fine time step size is fixed to Δt = 10−6

For this study, we use benchmark B1 with the following
changes: we focus on the two viscosities ν ∈ {0.005, 0.01}
and vary the time step size of the coarse solverΔT ∈ {1/2i ×
10−2|i ∈ {0, . . . , 3}}. For the coarse solvers of the Parareal
algorithm we use IMEX and SL.

The number of iterations needed for convergence for the
Parareal algorithm is listed in Table3 for all combinations
of viscosities and time step sizes. Based on Sect. 6.3.2, we
know that the IMEXcoarse solver leads to divergent behavior

for ΔT = 1 × 10−2, which results in the high number of
iterations to converge. This is also the explanation for the 32
iterations with ν = 0.01 and ΔT = 5 × 10−3. The reduced
number of iterations for this case is caused by the unstable
behavior appearing at a later iteration. All other results show
no instabilities of the solvers during all iterations.

A reduction of ΔT leads to a reduction of the number of
iterations to converge of the Parareal algorithm. Thismatches
with the theory of [18]. An exception is the reduction from
ΔT = 2.5 × 10−3 to ΔT = 1.25 × 10−3, which does not
lead to a reduction in the number of iterations with the SL
coarse solver. A reason for this can be found in the coarse
time step size, which does not lead to a reduction in the error
of the coarse solver due to SL depending also on the spatial
grid size. Reducing the spatial grid size fromΔx = 1/256 to
Δx = 1/512 reduces the error of the coarse solver indicating
dominating errors from the 2nd order spatial interpolation of
the SL scheme.

The results show the advantage of the SL formulation for
the cases where IMEX has no guarantee of stability over
the whole Parareal algorithm. In these cases the additional
computation and communication of the SL formulation lead
to a large decrease in iterations to converge compared to using
IMEX as a coarse solver.

6.4 Parareal B2: Transport of a wave over time

We continue with results of benchmark B2 with a focus on
the required number of iterations to converge.

From Fig. 8, we can see computations with a viscosity
ν ≥ 0.0003 converging within k ≤ 5 iterations for both
coarse solvers (IMEX and SL). With IMEX one iteration
fewer is needed between ν = 0.0003 and ν = 0.001. This
can again be explained by the fact that the SL solver is also
influenced by the spatial discretization, and, therefore, the
error of the coarse solver has an additional bound preventing
it from a better initial guess for the fine solver.

123



56 A. Schmitt et al.

0.0001 0.001 0.01

0

30

60

90

ν

k
CIMEX

CSL

Fig. 8 Parareal iterations k needed for convergence of the algorithm
plotted against the viscosities ν for benchmark B2 with IMEX as the
fine solver and IMEX and SL as the coarse solver

The fast convergenceof these calculations canbe attributed
to a stable behavior of the solvers in all Parareal iterations.
The IMEX coarse solver is more stable with B2 than with
B1, because the maximal velocity is smaller for B2, which
can be seen by comparing Figs. 2 and 3.

For the two smallest viscosities we observe a drastic
increase in iterations to convergence with IMEX whereas
the algorithm with SL still converges within k = 4 iter-
ations. The increase results again from instabilities of the
coarse solver within the Parareal iterations. This shows once
more the potential of the SL formulation as a coarse solver
for parallel-in-timemethods with advection dominated prob-
lems.

7 Conclusion

In this work, we have shown the potential of the semi-
Lagrangian formulation as a coarse solver for parallel-in-
time methods using the Parareal method applied to the
viscous Burgers equation.

Since our focuswas on the benefits of the semi-Lagrangian
formulation as a coarse solver for advection dominated
problems, we investigated two benchmarks with different
characteristics based onmanufactured solutions in the region
of small viscosities.

We compared the semi-Lagrangian method in combina-
tion with an implicit Euler (SL) to an explicit (RK) and
an implicit–explicit (IMEX) Runge–Kutta method for the
coarse solver. The fine solver was chosen to be the IMEX
method. The RK method was not stable as a coarse solver
for the investigated cases and, therefore, did not lead to any
speed up regarding the number of iterations to convergence.
With the considered benchmarks, we found that for param-
eter combinations with both IMEX and SL turned out to
be stable as the coarse solver all Parareal calculations need
a similar number of iterations to convergence. Since SL is
computationally more expensive and needs additional com-
munication, the method of choice in these cases is IMEX.
In all parameter combinations examined where the IMEX

method was unstable as a coarse solver the SL method is the
method of choice as it needs far fewer iterations to conver-
gence due to its stable behavior.

The stability of SL makes a larger range of viscosities
suitable to the Parareal method compared to IMEX. Contin-
uously decreasing the viscosity also leads to an increasing
number of iterations for SL. We were able to show a con-
vergence with potential for speed up even for a viscosity of
ν = 0.

Since our implementation of the Parareal algorithm is run
serially, we can only show the potential of the SL formulation
based on number of iterations needed for convergence. In
further work it has to be investigated how large the speed
up actually is considering the additional computation and
communication necessary with SL.
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