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SEMI-LAGRANGIAN EXPONENTIAL INTEGRATION WITH
APPLICATION TO THE ROTATING SHALLOW WATER

EQUATIONS∗

PEDRO S. PEIXOTO† AND MARTIN SCHREIBER‡

Abstract. In this paper we propose a novel way to integrate time-evolving partial differential
equations that contain nonlinear advection and stiff linear operators, combining exponential integra-
tion techniques and semi-Lagrangian methods. The general formulation is built from the solution of
an integration factor problem with respect to the problem written with a material derivative, so that
the exponential integration scheme naturally incorporates the nonlinear advection. Semi-Lagrangian
techniques are used to treat the dependence of the exponential integrator on the flow trajectories.
The formulation is general, as many exponential integration techniques could be combined with
different semi-Lagrangian methods. This formulation allows an accurate solution of the linear stiff
operator, a property inherited by the exponential integration technique. It also provides a sufficiently
accurate representation of the nonlinear advection, even with large time-step sizes, a property in-
herited by the semi-Lagrangian method. Aiming for application in weather and climate modeling,
we discuss possible combinations of well-established exponential integration techniques and state-of-
the-art semi-Lagrangian methods used operationally in the application. We show experiments for
the planar rotating shallow water equations. When compared to traditional exponential integration
techniques, the experiments reveal that the coupling with semi-Lagrangian allows stabler integration
with larger time-step sizes. From the application perspective, which already uses semi-Lagrangian
methods, the exponential treatment could improve the solution of wave dispersion when compared
to semi-implicit schemes.
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1. Introduction. Consider an autonomous initial value problem of the form

∂u

∂t
= L(u) +N (u), u(0) = u0,(1)

where L is a linear (possibly differential) operator and N is a function (usually non-
linear). Exponential integrators are usually derived making use of exponentials of a
discrete form of the linear operator L. Many schemes of this form exists, as one may
notice from the review of [28].

Several application models, such as those related to fluid dynamics [54], have an
important advection term in the equations, usually nonlinear (~v · ∇u). This can be
represented as

Du

Dt
=
∂u

∂t
+ ~v · ∇u = L(u) + Ñ (u), u(0) = u0,(2)
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where D/Dt represents a total or material derivative, ~v = ~v(t, ~x, u) is the advection
velocity, u = u(t, ~x), Ñ represents a general nonlinear term, and the gradient (∇)
acts only on the spatial variables (∇ = (∂x1

, ∂x2
, . . . , ∂xn

)).
The treatment of the nonlinear advection in exponential integrators varies and

leads to different mathematical properties. It can, for instance, be simply thought of
as a nonlinear term in the exponential integration scheme [8]. Or else, the nonlinear
term can be treated via a linearization procedure [14, 34, 9, 49, 23, 30].

A well-established method to solve equations with nonlinear advection is the semi-
Lagrangian advection approach [43, 52, 18], sometimes denoted as the characteristics
method [40, 7, 6]. The cost-effectiveness of semi-Lagrangian schemes depends on the
problem [4]. They are used in computational fluid dynamics [57, 12] and are very
successfully used in weather forecasting [55], hence their adoption by several weather
forecasting centers in operational models [16, 3, 21, 38].

Exponential integrators and semi-Lagrangian schemes have an interesting connec-
tion. For linear advection, the characteristics (which define a particle trajectory) are
precisely given by the exponential of the linear advection operator [10]. Moreover, for
nonlinear advection, it is possible to establish an equivalence between the solution of
a general integration factor problem to a semi-Lagrangian approach [51]. Therefore,
it is possible to obtain properties of semi-Lagrangian schemes considering them from
an exponential operator point of view. Or, similarly, it is possible to consider the solu-
tion of a semi-Lagrangian problem in place of an operator exponential [11]. The latter
allows, for example, the development of high order semi-Lagrangian schemes [12].

The goal of this work is to further explore a combination of semi-Lagrangian and
exponential integrators. The key development in this paper is to consider an expo-
nential integration scheme that is built with respect to the total (material) derivative
and therefore treats nonlinear advection within the exponentiation framework, which,
to our knowledge, has not yet been explored in the literature. With this methodol-
ogy, nonlinear advection is calculated accurately with low dispersion error (property
earned from the semi-Lagrangian approach), in combination with an accurate solution
of the linear problem even for very stiff problems (property earned from the expo-
nential integration). In principle, several combinations of exponential integration and
semi-Lagrangian schemes could be explored. We will derive the general principles of
the method and then illustrate how well-established schemes can be used together.

Traditional geophysical fluid dynamics models usually employ either an explicit
time stepping scheme, for which the time-step sizes are constrained by faster waves
in the system (e.g., inertia-gravity), or implicit time stepping schemes (e.g., Crank–
Nicolson), which allow larger time-steps, at the cost of slowing the faster (short wave-
length) linear waves. A recent review on the matter of time stepping schemes for
weather and climate [38] points out the need for time integration schemes that allow
large time-steps while preserving wave dispersion properties. Small-scale horizontal
gravity waves play an important role in the large structure of the middle atmosphere,
particularly for climate simulations [37]. Exponential integrators provide a way to
obtain large time-steps without affecting these small-scale waves, preserving superior
linear dispersion properties (see [46, 13]).

An important model for the atmosphere and ocean dynamics is formed by the
two-dimensional nonlinear rotating shallow water equations (SWEs), as they provide
a simple set of equations that already carry many of the complications encountered
in full three-dimensional dynamics. Recent works of [14] and [24] explored the use
of exponential integrators in SWE and showed their potential and practical relevance
to weather forecasting. They explored the dynamic linearization procedure of [53] to
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obtain their exponential integrator, and the nonlinear advection was treated within
the linearization. Also within this application framework, [23] shows results from
exponential integrator schemes for Boussinesq thermal convection, indicating higher
computational cost but greater accuracy with respect to well-established schemes for
the problem. Considering linear equation sets for this application, [2] solves the linear
advection problem on the sphere, which is an important test case for weather and
climate, using exponential integration. Also, [47] solves the linear SWEs on the plane
with a spectral solver with a rational approximation of the exponential integrator [26]
(T-REXI) and analyzes the potential computational gain of a massively parallel
scheme to compute exponentials on linear operators. The full nonlinear SWE on the
rotating sphere is solved in [48] with a numerical Cauchy-contour-integral approximat-
ing exponential time integration (CI-REXI), resulting in promising wallclock-time-to-
error improvements with exponential integrators. However, the practical adequacy
of exponential integration schemes with semi-Lagrangian methods for weather and
climate is still a matter of research. In particular, it turns out that taking large time-
steps with semi-Lagrangian formulations is extremely challenging, a problem to which
this study hopes to contribute.

A combination with similarities to the one proposed here was developed in [13]
where, instead of deriving the exponential integration along trajectories, a Laplace
transform following trajectories was used. The authors analyze how this semi-
Lagrangian Laplace transform method can improve certain aspects of the solutions
obtained with traditional semi-Lagrangian semi-implicit scheme, considering also a
shallow water model. However, obtaining large time-step sizes turned out be a chal-
lenge in their formulation.

The paper is organized as follows. In sections 2 and 3 we review usual exponen-
tial integration techniques and semi-Lagrangian techniques, respectively. These two
sections will be used in the development of the novel semi-Lagrangian exponential
technique, which is shown in section 4. Section 5 reviews properties of the SWEs.
Numerical results of the methods developed are shown in section 6. We finish the
paper with some remarks in section 7.

2. Exponential integration. We start by providing a brief review of some ex-
isting exponential integration techniques that will be relevant for the semi-Lagrangian
exponential approach. More details may be found in the review of exponential inte-
grators of [28] and in references therein.

2.1. Analytical time integration. Numerically, the solution of (1), u(t), is
approximated by (n) discrete values that could be, for example, grid point values or
spectral coefficients. This defines the discrete solution U(t) ∈ Rn evolving in time.
The linear operator (L) can be approximated by a discrete version of it (L), with a
preferred discretization scheme. Since L may be originated from a partial differential
equation problem, it is prudent to keep in mind that L may carry information from
spatially varying features. However, having been derived for an autonomous system,
it is independent of time. So the analogous semidiscrete problem of interest may be
written as

dU(t)

dt
= LU(t) +N(U(t)), U(0) = U0,(3)

where L ∈ Rn × Rn is the discrete linear operator (an n × n matrix) and N(U) is a
discrete version of N (u).



B906 PEDRO S. PEIXOTO AND M. SCHREIBER

Now let’s assume that U(tn) is given for a current time tn, and that we wish to
calculate U(tn+1) for tn+1 = tn+∆t. Since L does not depend on time, the integration
factor problem,

dQn(t)

dt
= −Qn(t)L, Qn(tn) = I,(4)

where I is the identity matrix, has a unique solution given by

Qn(t) = e−(t−tn)L.(5)

Using the integration factor in (3) one sees that

d

dt
(Qn(t)U(t)) = Qn(t)N(U).(6)

Therefore the problem has an exact solution which may be implicitly represented as

U(tn+1) = e∆tLU(tn) + e∆tL

∫ tn+1

tn

e−(s−tn)LN(U(s))ds,(7)

where we note that Q−1
n (t) = e(t−tn)L is the inverse of Qn(t). This last equation is

well known as the variation-of-constants formula.

2.2. Numerical time integration (ETDRK). Exponential integration makes
use of calculations of the exponentials, and/or exponential related functions, to obtain
a time marching scheme along the lines of (7).

The main difference between variants of exponential integration schemes is in
the way the nonlinear term is evaluated. If the equation is purely linear (N = 0),
then the integral term in (7) vanishes and it is possible to solve the problem directly
from the matrix exponential calculation for each time-step. For nonlinear problems,
there exist several approaches (see [28]). We will use Runge–Kutta exponential time
differencing (ETDRK) as a representative method, following [15]. However, for the
semi-Lagrangian exponential scheme (to be shown), other methods could be consid-
ered in a similar fashion.

As a first order approximation, let the nonlinear term N(U) in the integral be
constant in time, for each time-step, with value N(U(tn)). Using (4) and assuming
L−1 exists, we may then formally derive what is known as the first order ETDRK
(ETD1RK) method,

Un+1
ED1 = ϕ0(∆tL)Un + ∆t ϕ1(∆tL)N(Un),(8)

where

ϕ0(z) = ez, ϕ1(z) = z−1(ez − 1)(9)

with z = ∆tL.
More general (higher order) exponential time differencing schemes may be derived

using higher order ϕk functions (see [15]), which may be defined from the recurrence
relation

ϕk+1(z) = z−1 (ϕk(z)− ϕk(0)) ,(10)

where potential singularities may be treated by a series expansions for ϕn evaluations
close to their singularity.
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We will be particularly interested in this paper in the second order ETDRK
(ETD2RK) scheme in order to allow a fair comparison to other well-established sec-
ond order approaches in our numerical experiments. Let Un be the numerical approx-
imation of U(tn) at time t; then the ETD2RK scheme may be written, as function of
the ETD1RK scheme, as

Un+1
ED2 = Un+1

ED1 + ∆tϕ2(∆tL)
(
N
(
Un+1

ED1

)
−N(Un)

)
,(11)

which is derived by substituting the second order approximation for the nonlinear
term,

N(U(s)) = N(U(tn)) +
(s− tn)

∆t
(N(UED1(tn+1))−N(U(tn))) +O

(
∆t2

)
,(12)

into (7).

3. Semi-Lagrangian integration. Eulerian schemes usually keep a fixed grid
and evaluate the movement of the particles that pass through a computational cell.
For nonlinear advection, these schemes usually have time-step size limited by the
Courant–Friedrichs–Lewy (CFL) condition. Lagrangian schemes usually follow parti-
cle trajectories (characteristics) through time and may not even rely on a fixed com-
putational grid, or else have a grid evolving over time. This can create complicated
grid structures involving, for example, intersections of trajectories. Semi-Lagrangian
schemes compensate for this by keeping a fixed grid but following the particle tra-
jectories for a single time-step (a local version of the classical Lagrangian approach).
Since the trajectories may end, or start, in points not on the reference grid, usually
an interpolation step is required.

In the context of atmospheric simulations, this scheme usually allows time-step
sizes significantly larger than CFL-restricted Eulerian schemes [44]. As we will ob-
serve, maintaining this property of significantly larger time-step sizes is a nontrivial
task with exponential integration.

In this section we introduce classic notations and results about semi-Lagrangian
schemes. This will be required as a basis to derive the semi-Lagrangian exponential
schemes in the next section. Further details on semi-Lagrangian methods can be
found in [52] and [18].

3.1. The material derivative. We start considering (2) on a Lagrangian frame-
work, relative to a particle initially positioned at ~r0 in space. Thus, the system state
is formed by u = u(t, ~r(t)), with advection velocity defined as ~v = ~v(t, ~r(t), u(t, ~r(t))).
Here, ~r(t) is the Lagrangian trajectory of the particle; therefore, it is the solution of
the nonautonomous problem

d~r(t)

dt
= ~v(t, ~r(t), u(t, ~r(t))), ~r(0) = ~r0.(13)

Equation (2) may be written in a Lagrangian framework as

du(t, ~r(t))

dt
=
∂u(t, ~r(t))

∂t
+ ~v · ∇u(t, ~r(t)) = L(u(t, ~r(t))) + Ñ (u(t, ~r(t)))(14)

with initial condition u(0, ~r0) = u0, where now L and Ñ may implicitly also depend on
the position ~r(t). This particular time derivative (d/dt) on the Lagrangian framework
is usually denoted as a total (material) derivative D/Dt, as in (2).
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As in the previous section, we will focus here on a discretized problem, where L
may be again directly viewed as a finite-dimensional matrix operator, hence linear,
and will be denoted by L. In a Lagrangian framework, L may depend on the particle
position ~r(t). Therefore, we may analogously to (3) set the general nonautonomous
semidiscrete problem to be

DU(t, ~r(t))

Dt
= L(U(t, ~r(t))) + Ñ(U(t, ~r(t))), U(t0, ~r(t0)) = U0,(15)

where Ñ is a numerical approximation to Ñ , and now the time differential is a total
derivative and depends on the solution of the problem given in (13).

Although there are many forms of semi-Lagrangian schemes [52], these usually
rely on basically two components with both playing important roles in the accuracy
and stability of the schemes [20, 18, 39].

Component (i): interpolation of the information to the reference grid. As shown
in [20], the interpolation order needs to be chosen in agreement with the accuracy
order of the trajectory calculation.

Component (ii): the evaluation of trajectories, which are solutions of the problem
(13).

We will consider a back-trajectory approach, which is a well-established approach
[29] that assumes that the grid is fixed at time tn+1. The trajectory determines the
position of a departure point at time tn, which is likely not to be a grid point, so an
interpolation of the advected quantity is required. The trajectory evaluation itself can
then be obtained by a direct numerical time integration of differential equation (13),
as a subcycling procedure, or, which is more common in atmospheric applications,
iteratively solve its integral form. In the later, one may obtain the departure point
~rd = ~r(tn) from the knowledge of the arrival point ~ra = ~r(tn+1), which is set to be a
grid point, using two-time level schemes [36]. This can be done using the midpoint
rule integration (for ~rm = ~r(tn+1/2)) and an iterative procedure to solve the nonlinear
resulting equation. An example of such procedure, which will be used in the present
work, uses the following iterative equation:

~r k+1
m = ~ra − ~v

(
tn+1/2, ~r

k
m, u

k
m

) ∆t

2
,(16)

where ukm = u(tn+1/2, ~r
k
m) and usually ~r 0

m = ~ra is used as initial step for the procedure.
The departure point is then obtained by simply considering ~rd = 2~rm − ~ra.

In case ~v is not known within [tn, tn+1], for example, if ~v depends on u, its
evaluation in intermediate times requires an extrapolation from previous time-steps.
This extrapolation may directly influence the stability of the scheme [18]. A well-
established approach is the stable extrapolation two-time-level scheme (SETTLS) of
[29], used at the European Centre for Medium-Range Weather Forecasts (ECMWF) in
its global spectral model Integrated Forecasting System (IFS) for operational weather
forecasts. All trajectory calculations used in this work follow the SETTLS scheme to
obtain the departure points.

3.2. Semi-Lagrangian solver (SL-SI-SETTLS). An important scheme for
atmospheric modeling is the one used in the IFS-ECMWF model. It uses a semi-
Lagrangian scheme coupled with a semi-implicit time stepping of linear terms, i.e.,
semi-Lagrangian semi-implicit SETTLS, with spectral horizontal discretization. This
scheme, based on [29], will serve as a first guideline in the development of the semi-
Lagrangian exponential schemes.
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The semi-implicit discretization with semi-Lagrangian Crank–Nicolson time step-
ping assumes

Un+1 − Un
∗

∆t
=

1

2

(
(LU)n+1 + (LU)n∗

)
+ Ñn+1/2,(17)

where the subscript ∗ with superscript n denotes interpolation to departure points (~rd)
[5] and the last term represents the nonlinearities at the midpoint of the trajectory.
This term is computed based on averaging and extrapolation (see equations (4.4) and
(4.5) in [29]) with

Ñn+1/2 =
1

2

 [
2Ñn − Ñn−1

]
∗︸ ︷︷ ︸

Extrapolation to tn+1

+Ñn

 ,(18)

which is the SETTLS extrapolation, where Ñn is the evaluation of the nonlinear
term at time tn. The unknowns in (17) are implicitly given by Un+1 and (LU)n+1,
requiring a linear solver.

To ensure an overall second order accurate scheme (assuming ∆t ∝ ∆x), it is suf-
ficient to use cubic interpolations of the advected quantities (with respect to (17) and
(18)) and linear interpolations of the velocities in the iterative process of trajectory
calculations [39].

4. Semi-Lagrangian exponential integration. In this section, we discuss
how the general exponential integration techniques can be applied in a Lagrangian
reference frame to derive the novel semi-Lagrangian exponential methodology.

4.1. Basic theory. The key concept investigated in this paper is to consider,
from a numerical perspective, the exponential integration of (15) considering the total
(material) derivative.

As in section 2, where we built exponential integration schemes from the solution
of an integration factor problem, we would like to be able to define a similar integra-
tion factor for the problem with respect to this material derivative. We assume the
existence of an integration factor Pn(t) that is a solution to the problem

D(Pn(t)U(t, ~r(t)))

Dt
= Pn(t)Ñ(U(t, ~r(t))), Pn(tn) = I.(19)

Assuming that U is a solution of (15), Pn will also be a solution of

DPn(t)

Dt
U(t, ~r(t)) = −Pn(t)L(U(t, ~r(t))), Pn(tn) = I.(20)

We recall that L may depend on the spatial variations, which are now depending also
on time due to the Lagrangian framework, so we will explicitly indicate this with a
subscript as L = L~r(t). If L~r(t) commutes in time, that is, L~r(t)L~r(s) = L~r(s)L~r(t) for
all times s and t, then the integration factor problem has a solution given by

Pn(t) = e−
∫ t
tn

L~r(s)ds.(21)

For the continuous problem with L based on space-varying coefficients (dependent
of the particle position), the commutation assumption of L will most likely not be
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satisfied. The integration factor may, however, still exist and be well defined, but
might not have the usual matrix exponential form. Assuming that such an integration
factor exists and that it is invertible (P−1

n exists for all time), (15) and (19) indicate
the following implicit relation on U (analogous to (7)):

U(tn+1, ~r(tn+1)) = P−1
n (tn+1)U(tn, ~r(tn)) + P−1

n (tn+1)

∫ tn+1

tn

Pn(s)Ñ(U(s, ~r(s)))ds.

(22)

This is the fundamental equation for the derivation of the semi-Lagrangian exponential
schemes developed in this paper.

Numerically, one needs an explicit way of calculating the integration factor. This
will depend on the problem of interest. One possibility is to directly numerically
integrate (20), which is the basis of many operator splitting techniques [51].

Another possibility, if such an integration factor is unknown in its exponential
form, is to assume that L does not vary within each time-step for each given local
trajectory, since then the problem reduces to a matrix exponential problem. This as-
sumption can be also thought of as the fundamental idea of semi-Langrangian methods
which we will apply later: interpolating the Lagrangian solution to a regular Eulerian
grid allows applying the linear and nonlinear operators on a regular grid. This should
provide a first order approximation to the true integration factor at each time-step.
This greatly simplifies the problem, as in this case Pn = Qn, as defined in (5), and
the problem reduces to

U(tn+1, ~r(tn+1)) = e∆tLU(tn, ~r(tn)) + e∆tL

∫ tn+1

tn

e−(s−tn)LÑ(U(s, ~r(s)))ds+ EL,

(23)

where EL denotes the potential errors introduced with the assumption of L being
constant along the trajectories. This is almost identical to what we obtained for
the usual exponential integration approach (see (7)), but now U is varying along a
particle trajectory in time, resulting in a derivation of what we are calling a semi-
Lagrangian exponential integration. Using the semi-Lagrangian notation, we rewrite
the numerical method from (23) as

Un+1 = e∆tLUn
∗ + e∆tL

∫ tn+1

tn

e−(s−tn)LÑ(U(s, ~r(s)))ds+ EL,(24)

where Un+1 is given at grid points and Un
∗ refers to the (interpolated) value at de-

parture points.
Finally, different semi-Lagrangian exponential schemes can be built depending on

how the integral is approximated, as is the case with the usual exponential integration
techniques. The integral consists of an application of a linear operator, which we will
compactly write as T (s) = e−(s−tn)L, and a nonlinear function calculation, compactly
w(s) = Ñ(U(s, ~r(s))). Interestingly, a method as simple as calculating a midpoint
rule integration can have different forms, and naive formulations may easily generate
inconsistent schemes.

We will discuss this issue by first pointing out two very important remarks which
will play a crucial role for the derivation of a consistent and stable semi-Lagrangian
exponential integration scheme.
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(R1) Integration: The integral term relies on a linear operator, T , acting on a non-
linear function, w, integrated along a trajectory. If we wish to evaluate the
term Tw at time tn−k with k ≥ 0, at departure points (or trajectory mid-
points), we should first apply the linear operator to the nonlinear function
evaluated at grid points at time tn−k and only then interpolate to the desired
trajectory point. Otherwise, if we first interpolate the nonlinear function
to the departure points, then the application of the linear operator would
be referring to an irregular grid, therefore possibly not being well defined
numerically. Consequently, at time tn−k, the application of the linear oper-
ators should come before the interpolation operation, as, for example, with
(T (tn−k)w(tn−k))∗.

(R2) Advected quantities: At time tn+1, interpolated values of quantities coming
from times tn−k, k ≥ 0, are assumed to have already been advected; therefore,
the results lie on a regular grid relative to the arrival points. Consequently, at
time tn+1, for advected quantities, the linear operator should be applied after
the interpolation operation, as, for example, with the e∆tLUn

∗ term of (24).
These important remarks are a peculiarity of this kind of semi-Lagrangian expo-

nential formulation. They are required since the interpolation operation of advected
quantities in general does not commute with a linear operator. That is, even though
e∆tL is a linear operator, possibly independent of time and space, it does not in gen-
eral commute with the interpolation operator (∗), since this interpolation reflects a
nonregular grid formed by nonlinear backward trajectories. Therefore, in general,
e∆tLUn

∗ 6= (e∆tLUn)∗. We provide, in Appendix A, an illustration of this lack of
commutation, which interestingly happens even in the case of linear advection.

Returning to the case of the midpoint rule integration of the nonlinear term, we
may have, for example, these two distinct approximations of the integral term:

∫ tn+1

tn

T (s)w(s) ds ≈

{
A1 = ∆t T (tn+1/2)

[
w(tn+1/2)

]
† ,

A2 = ∆t
[
T (tn+1/2)w(tn+1/2)

]
† ,

(25)

where we used the † symbol to indicate the interpolation to the midpoints of the
trajectories (whereas the interpolation to departure points is indicated with ∗).

In A1, first the nonlinear function (w) is evaluated at the intermediate time
(tn+1/2) on a regular grid, and then this is used to obtain interpolated values at
the trajectories midpoints. Only then the operator T , evaluated at time tn+1/2,
is applied. Since the operator is applied on values given at trajectories midpoints,
this application happens on a possibly irregular grid and therefore may result in an
inconsistent application of the operator.

In A2, first both the operator T and the nonlinear function w are evaluated at
the intermediate time (tn+1/2), on a regular grid; then the operator is applied on w.
Only then interpolated values are obtained for the midpoints of the trajectories. In
this case the linear operator is always applied on regular grid quantities.

As an example, consider the following scheme:

Un+1 = e∆tLUn
∗ + ∆t e

∆t
2 LÑn+1/2 (unstable scheme),(26)

where Ñn+1/2 is an approximation of the nonlinear term at the trajectory midpoint,
for example, considering (18). Due to the aforementioned remarks and discussion,
this scheme applies the linear operator on conceptually irregular grids and therefore
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may be inconsistent with the underlying equations. Experiments with this method
revealed it is unstable even with small time-step sizes.

4.2. Semi-Lagrangian exponential SETTLS (SL-EXP-SETTLS). Follow-
ing the SETTLS scheme [29] for the semi-Lagrangian discretization, but using it with
respect to (24), we may derive our first combination of the semi-Lagrangian exponen-
tial scheme, which we will denote as SL-EXP-SETTLS. The scheme is derived from
(24) as

Un+1
SLEX = e∆tLUn

∗ + ∆t e∆tLÑn+1/2
e ,(27)

where we use the SETTLS extrapolation to obtain the value of Ñ at the trajectory
midpoint as

Ñn+1/2
e =

1

2

[
2Ñn − e∆tLÑn−1

]n
∗

+
1

2
Ñn.(28)

We note that Ñ
n+1/2
e is an approximation of e−(s−tn)LÑ(U(s, ~r(s))) at the midpoint

of the trajectory taking into account the remark (R1). One may note that it differs
from the method presented in (26), as in this case the linear operator and nonlinear
calculations are not split but computed jointly at desired time-steps.

It is possible to simplify the above equations in order to require only two expo-
nential evaluations per time-step. This scheme is a multistep scheme that requires
information from two previous time-steps. This scheme may also be thought of as
a semi-Lagrangian version of the integrating factor method, proposed in [15] as the
second order Adams–Bashforth integrating factor method, as one can notice from
equation (31) in [15].

As discussed in [15], the concept of stability for integrating factor methods is
unclear. This is also the case for our semi-Lagrangian version of exponential schemes.
Therefore, this is a topic we discuss in this paper purely from a numerical perspective.

4.3. Semi-Lagrangian exponential ETDRK (SL-ETDRK). To construct
semi-Lagrangian ETDRK (SL-ETDRK) schemes in analogy to usual ETDRK schemes,
we need to pay attention to the remarks (R1) and (R2) above. In usual exponential
time differencing schemes, as shown in section 2, the exponential in front of the in-
tegral in (24) would commute with the integral, to be placed within the integrand.
However, since now the integral is along trajectories, this no longer results in an equiv-
alent problem in the numerical scheme, due the remarks pointed out above. Therefore,
we should first evaluate the integral term and then apply the linear operator (e∆tL).

Following this strategy, we may derive the semi-Lagrangian ETD1RK (SL-
ETD1RK) scheme in the following way. From (23), assuming as in ETD1RK that the
nonlinearity is constant within a time-step, we have

Un+1
SLED1 = ϕ0(∆tL)

[
Un + ∆t ϕ1(−∆tL)Ñ(Un)

]n
∗
,(29)

where we used that ϕ1(z) = ϕ0(z)ϕ1(−z). This scheme can be computed numerically
with only two ϕ function evaluations and one interpolation per time-step.

Deriving the second order scheme (SL-ETD2RK) involves a more careful analysis
of how the integral in (23) is approximated. Let

N(U(s)) = N(U(tn, ~r(tn))) +
(s− tn)

∆t
(N(USLED1(tn+1, ~r(tn+1)))

−N(U(tn, ~r(tn)))) +O(∆t2);(30)
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then

USLED2(tn+1, ~r(tn+1)) = ϕ0(∆tL)U(tn, ~r(tn))

+ ϕ0(∆tL)

(∫ tn+1

tn

e−(s−tn)Lds

)
N(U(tn, ~r(tn)))

+ ϕ0(∆tL)

(∫ tn+1

tn

(s− tn)

∆t
e−(s−tn)Lds

)
N(U(tn+1, ~r(tn+1)))

− ϕ0(∆tL)

(∫ tn+1

tn

(s− tn)

∆t
e−(s−tn)Lds

)
N(U(tn, ~r(tn))).(31)

To be able to preserve e∆tL outside of the integral and still make use of the ϕ
functions of ETDRK schemes, we may factor out the ϕ0(z) = ez function of the ϕk

functions. Let ψk functions be defined as

ψk(z) = (−1)k+1ϕk(−z) +

k−1∑
l=1

ϕl(−z).(32)

It can be shown that ϕk(z) = ϕ0(z)ψk(z) by substituting (10) into the right-hand
side of the definition of ψk and using binomial expansions in a similar way as done in
[15].

Using the SL-ETD1RK scheme and the properties of the ϕ functions with respect
to ψ functions, we may write the SL-ETD2RK scheme as

Un+1
SLED2 = Un+1

SLED1 + ∆t ϕ0(∆tL)
[
ψ2(∆tL)N

(
Un+1

SLED1

)
− (ψ2(∆tL)N(Un))

n
∗
]
.(33)

After suitably rearranging the equations, the scheme can be coded to require four
evaluations of ϕ (or ψ) functions and two interpolations.

5. Rotating SWEs on f-plane. In this section we review the basic concepts of
the SWEs, which will serve as an application for the schemes discussed in the previous
sections.

Considering a Lagrangian framework with particle trajectories given by ~r(t) =
(x(t), y(t)) on a plane, we define ~v = ~v(t, ~r(t)) = (u(t, ~r(t)), v(t, ~r(t))) to be the flow
velocity and η = η(t, ~r(t)) a fluid depth perturbation about a constant mean fluid
depth (η̄). The rotating SWEs on a plane may then be written as

DU

Dt
= LU + Ñ (U),(34)

where the time derivative is assumed to be the total (material) derivative, and

U =

 u
v
η

 , L =

 0 f −g∂x
−f 0 −g∂y
−η̄∂x −η̄∂y 0

 , Ñ (U) =

 0
0

−η∇ · ~v

 ,(35)

where the total fluid depth h is given by h = η + η̄. The gravity g and the Coriolis
parameter f are assumed to be constant throughout this paper (f-plane approxima-
tion). Initial conditions for the prognostic variables (u, v, η) are assumed to be given.
Biperiodic boundary conditions will be adopted for (x, y) on a rectangular limited set
of R2. The bottom topography considered in this work is assumed to be flat.
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Well-established models adopt semi-implicit schemes [18, 44] with implicit treat-
ment of linear terms and explicit treatment of nonlinearities. Among the implicit
schemes for the linear waves, Crank–Nicolson (trapezoidal differencing) is frequently
adopted, as done, for example, in the IFS model of the ECMWF [19, 29], coupled
with a semi-Lagrangian approach. Modern models that use nonregular spherical grids,
such as the MPAS [50] or DYNAMICO [17], adopt explicit time stepping procedures
based on Runge–Kutta time integration. See [38] for an extensive list and description
of the main time stepping schemes used for weather and climate models.

5.1. Exponential of the linear operator. We seek to find the exponential
of the linear operator L, where we assume the time-step size ∆t incorporated into L
by simple scaling. Assuming a double Fourier expansion of U in space on a [0; 2π)2

periodic domain, we can look at a single mode (single wavenumber) to understand
the action of L in terms of its exponentials. For a fixed time, let U be of the form

U~k(~x) = ei
~k·~xÛ~k with ~k = (k1, k2), ~x = (x1, x2) = (x, y), Û~k independent of ~x, and

i =
√
−1. Then

LU~k =

 0 f −gik1

−f 0 −gik2

−η̄ik1 −η̄ik2 0

 Û~k,(36)

where the matrix above is the matrix symbol of L (usually denoted as L(i~k)) with
purely imaginary eigenvalues [35],

ωf (~k) = 0, ωg(~k) = ±i
√
f2 + g η̄ ~k · ~k,(37)

where ωf (~k) is the steady geostrophic mode and ωg defines the two inertia-gravity

wave modes (ω−g (~k), ω+
g (~k)). The eigenvectors can be directly computed from L(i~k),

yielding a matrix of eigenvectors Q. Writing the eigenvalues as a diagonal matrix
Λ = [ωf (~k), ω−g (~k), ω+

g (~k)] and using L(i~k) = QΛQ−1, the exponential of L can be
directly calculated for the shallow water system through its symbol as

eL(i~k) = QeΛQ−1,(38)

where the eΛ is the diagonal matrix with entries given by the exponential of the
respective eigenvalues.

For the studies conducted in the present work, we exploit features from double
Fourier spectral spatial discretization. This allows us to compute the numerical matrix
exponential directly from (38), providing an exponential (ϕ0) of the linear operator
accurate to machine precision. To evaluate ϕn(∆tL) functions (see (10)), we use that
in spectral space

ϕn

(
∆tL

(
i~k
))

= Qϕn(∆tΛ)Q−1;(39)

hence we compute ϕn elementwise for each diagonal element in Λ.
We would like to emphasize that computing the exponential directly as discussed

above is only possible because we are exploiting the orthogonality of Fourier basis on
the biperiodic domain. For the SWEs on the sphere, we’d like to mention that a similar
feature was recently also discovered by using spherical harmonics to exponentially time
integrate gravity modes.
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In many problems such simplification may not always be possible, requiring dif-
ferent matrix exponentiation techniques. Even though many approaches to calculate
exponentials exist (see [28]), two approaches are currently most commonly researched
in this context: Krylov subspace solvers and rational approximations. Krylov solvers,
such as those presented in [27], are used in [14] and [24] for the matrix exponentiation
of a dynamic linearization of the shallow water system. Furthermore, [47] adopts a
rational approximation based on [26] for the rotating SWE on the plane, which is also
used for the sphere in [46, 48] with a global spectral spherical harmonics representa-
tion. This rational approximation approach calculates the matrix exponentials with
a very high degree of parallelism, so the additional computational costs of calculating
such exponentials may be absorbed by extra compute nodes to still reduce the time
to solution.

In this study we will use the analytical linear operator exponential described
in (38). Therefore, we will not address the discussion of different exponentiation
techniques with respect to the semi-Lagrangian exponential method.

5.2. Dispersion properties and C-grids. The linear SWE on an f-plane de-
fine a hyperbolic system formed by inertia-gravity (Poincaré) and geostrophic (steady)
waves, with the dispersion relations described in the previous section (ωg and ωf , re-
spectively). Numerical schemes should be able to represent well these two kinds of
waves. We will adopt in this study spectral spatial discretizations of the linear opera-
tor (based on Fourier series); therefore, errors in the evaluation of the linear operator
are negligible (of machine precision) for each wavenumber. However, the temporal
discretization may still be a source of error which can be directly investigated.

Linear exponential integration schemes do not introduce any errors in time if
the linear operator and its exponential are calculated analytically. However, state-
of-the-art weather forecasting systems do not usually adopt exponential integration
schemes, but mostly Runge–Kutta schemes [50] when explicit, or Crank–Nicolson [29]
when implicit (see a complete description in [38]). To ensure large time-steps, implicit
schemes are preferred, but, in this case, the dispersion relations are usually not very
accurately attained for the smaller wave-modes (faster gravity waves). Durran [18]
shows that the approximate dispersion (ω̃) of the Crank–Nicolson scheme preserves

the steady geostrophic modes (for ω̃f (~k) = ωf (~k) = 0). However, the gravity waves
will have dispersion of the form

ω̃g(~k) = ωg(~k) +
∆t2

12
(ωg(~k))3 +O

(
∆t5

)
,(40)

which is purely imaginary (the amplitude of the mode is not altered by the scheme),
but the phase speed is affected. The odd powers of ωg indicate that the additional
terms (error) will always produce a reduction of the ω̃g frequency, and this reduction

will be larger the larger the wavenumber norm (~k · ~k), since it depends on ωg(~k).
Therefore, the error in the Crank–Nicolson method slows down the faster (larger
wavenumber) inertia-gravity waves, which will be slower when larger time-step sizes
are used.

For finite difference schemes the spatial errors significantly influence the dispersion
relations. [42] analyzes the effect of different discretizations on the shallow water waves
dispersions. To preserve an adequate representation of the inertia-gravity waves and
reduce computational modes arising from spatial discretizations, staggered grids are
preferred. These are usually called C-grids in the geoscientific modeling community
and have the depth variable centered in the cell and the velocities given at the edges
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of cell, normal to the edge [1]. Since many modern atmospheric models that use non-
regular C- grids are using finite differences or volumes with explicit time integration,
we will also consider this approach as a reference in our experiments further in the
paper.

6. Numerical experiments. We will consider the following set of schemes to
be analyzed:

• RK-FDC: Runge–Kutta second order in time with second order in space en-
ergy conserving finite differences discretization on a staggered C-grid [45].

• SL-SI-SETTLS: Semi-Lagrangian, semi-implicit (Crank–Nicolson) scheme us-
ing spectral discretization adapted from [29] to the plane.

• SL-EXP-SETTLS: Exponential version of SL-SI-SETTLS (see section 4.2).
• ETD2RK: Original ETD2RK scheme with spectral space discretization (see

section 2).
• SL-ETD2RK: Semi-Lagrangian version of ETD2RK (see section 4.3).
• REF: Reference solution. Runge–Kutta fourth order in time with small time-

step and high resolution Eulerian spectral discretization (pseudospectral for
all nonlinear terms, such as advection).

The schemes are connected in the following way. RK-FDC is a reference explicit
scheme well-established for the solution of the SWEs of very low cost per time-step,
but restricted to smaller time-steps (CFL condition). SL-SI-SETTLS is the state-of-
the-art scheme used in many global atmospheric dynamical cores, which we aim to
compare to our semi-Lagrangian exponential schemes (SL-EXP-SETTLS, SL-EXP-
ETD2RK). ETD2RK is a well-established exponential integration technique, which
we aim to compare to our semi-Lagrangian version, SL-ETD2RK, considering the
different treatment of the nonlinear advection.

6.1. Definitions of domain and parameters. The experiments will be exe-
cuted on a scenario that mimics the Earth’s dimensions, and we will follow the stan-
dard spherical test case parameters defined in [56]. The domain is set to be [0, Lx]×
[0, Ly] = [0, 2πa]× [0, 2πa], where a = 6371.22 km is the Earth radius, with biperiodic
boundary conditions. The gravity acceleration constant is set to g = 9.80616 ms−2,
and the Coriolis frequency constant is f = 2Ω with Ω = 7.292 × 10−5 rad · s−1. The
mean depth is η̄ = 10 km so that the gravity wave speed is c =

√
gη̄ ≈ 313 ms−1.

The experiments will be performed with a horizontal discretization of 512 spectral
modes in each dimension. This corresponds to 768 physical grid points to avoid
aliasing effects, which would result in a grid cell with a length of approximately 52 km
in each coordinate. The exception is REF, for which we will use 1024 spectral modes
per coordinate. Such high horizontal resolution was chosen in order to reduce the
errors relative to spatial discretizations and allow a clearer comparison of the different
time stepping schemes. The time-step sizes will vary according to the analysis to be
investigated.

We will present results of errors in two metrics: maximum absolute error
(MaxError) and root mean square error (RMSError), always for fixed integration
time (timestamp). In case of mismatching resolutions, where pointwise comparison is
not well defined, bicubic spline interpolation is used on the highest resolution result
to obtain information on the lowest resolution grid. This lack of matching happens as
we are using a collocated grid (A-grid in geophysical notation) for REF, with physical
representation of the quantities considered in the center of the cell.

6.2. Kinetic energy spectra. The analysis of the energy spectra is deeply
related to the study of turbulence in fluid dynamics models, which is well investigated
for the atmosphere (e.g., [33, 31]). Here, we do not intend to do turbulence analysis but
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rather use spectrum analysis to compare small-scale wave interactions of the different
schemes. Therefore, we will assume a simplified kinetic energy spectrum analysis.

The one-dimensional discrete power density spectrum ([41]) is obtained from
the two-dimensional kinetic energy spectrum using the Fourier transformed veloci-
ties (û(~k), v̂(~k)), as

En =
∑

n≤‖~k‖<n+1

E~k, where E~k =
1

2

(
û(~k) û∗(~k) + v̂(~k) v̂∗(~k)

)
,(41)

where ~k = (k1, k2) represents a horizontal mode, ∗ represents the complex conju-

gate, ‖~k‖ =
√
k2

1 + k2
2, and En represents the spectrum density with respect to the

wavenumber n and wavelength L/n with L the size of the domain. This closely follows
what is usually done in spherical atmospheric models (e.g., [31]).

6.3. Unstable jet test case. On the sphere, a well-known test case is defined
by the Galewsky, Scott, and Polvani [22] initial conditions. These initial conditions
define a geostrophically balanced midlatitude zonal jet. A small perturbation in the
height field is added in order to generate fast gravity waves that eventually destabilize
the jet and form well-defined vortices after a few days.

On the biperiodic plane, no such test case exists, so we propose something similar
in the following way. We define two jets by the u and v velocities as

u(x, y) = u0 (sin(2πy/Ly))
81
, v(x, y) = 0,(42)

where u0 = 50ms−1 is the maximum speed and the power of 81 was chosen so that
the jet is confined in a small region. To ensure that the depth field is in balance with
the velocity field, that is, that the initial conditions are analytically in a steady state,
we define the depth perturbation as

η(x, y) = −f
g

∫ y

0

u(x, s)ds.(43)

The integral is solved numerically through repeated piecewise Gaussian integrals en-
suring that the integral is calculated within desired tolerance for double precision.

Small Gaussian perturbations (ηp) are added to η to trigger the barotropic insta-
bility,

ηp(x, y) = 0.01η̄ [exp{−kd1(x, y))}+ exp{−kd2(x, y)}] ,(44)

where k = 1000, and di(x, y) = (x−xi)
2

L2
x

+ (y−yi)
2

L2
y

, i = {1, 2}, are the square Euclidean

distances of (x, y) to the points p1 = (x1, y1) = (0.85Lx, 0.75Ly), p2 = (x2, y2) =
(0.15Lx, 0.25Ly), respectively.

Initial conditions are presented in Figure 1. Note that the zonal jets move towards
different directions (left-right) in order to ensure periodicity of all initial fields. We
present in Figure 2 results from the high resolution REF scheme with a small time-step
size of 2 seconds. The initial Gaussian perturbations trigger the generation of fast-
moving inertia-gravity waves that dominate the initial period of time integration. The
waves start interacting with each other through the nonlinear effects and eventually
disturb the jets to form well-defined vortices at day 10, shown in Figure 2(a) with the
vorticity of the flow.

We will also use this test case neglecting the nonlinear divergence of the SWEs
(Ñ from (35)). The SWE flow is still nonlinear due to the nonlinear advection term.
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Fig. 1. Initial conditions for the unstable jet test case. (a) Total depth (η + η̄) and (b) zonal
velocity (u).

Fig. 2. REF for vorticity at 10 days. (a) Full nonlinear SWEs. (b) Difference from full SWEs
to the one with neglected nonlinear divergence term (Ñ = 0).

In fact, the solution of the unstable jet initial condition neglecting the nonlinear
divergence is very similar to the solution considering this term (see Figure 2(b)).
Even though this term might not visually influence significantly the solutions after 10
days, it plays an important role in energy cascade and nonlinear interaction of waves.
Also, it will influence the numerical properties of the scheme, as we will see further
on in the next section.

After longer periods of time, the flow develops into a fully turbulent regime, as
may be seem in Figure 3(a) (the flow considering Ñ = 0 is very similar to the full
SWEs). From a spectral point of view, energy moves towards smaller wavelengths as
time evolves, as may be seen in Figure 3(b). The initial kinetic energy spectrum is
basically defined by the spectrum of powers of trigonometric functions (in this case
sin81(2πy/Ly) ). As the power chosen (81) is odd, the spectrum will be zero for all even
wavenumbers. That is why we see a zig-zag pattern in the early stages of integration
in the kinetic energy spectrum for t > 0. Energy builds up in even wavenumbers due
to nonlinear interactions. Note also that the spectra converge towards the well-known
−5/3 power law of two-dimensional kinetic energy turbulence [33]. Reproducing this
kind of spectra in small wavelengths stably is usually a major challenge for numerical
schemes.

6.4. Analysis of the SWEs without nonlinear divergence. Considering
Ñ = 0 simplifies the semi-Lagrangian exponential schemes. In fact, in this case,
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Fig. 3. (a) REF for vorticity at 30 days using the full nonlinear SWEs. (b) Kinetic energy
spectrum for REF using the full nonlinear SWEs for different integration times (from 1 day to 20
days).

Fig. 4. Errors at day 1 of integration of the unstable jet test case without nonlinear divergence.
(a) Maximum absolute error and (b) RMS error for day 1 of integration with respect to REF for
different time-step sizes and schemes. All schemes were tested for all time-step sizes indicated. If a
scheme does not shows a value for a large time-step size it indicates that it became unstable for this
test. The SWEs without nonlinear divergence were adopted in this test; therefore, SL-EXP-SETTLS
and SL-ETD2RK are identical.

SL-EXP-SETTLS and SL-ETD2RK are equivalent, since the only nonlinearity left
(advection) is treated within the semi-Lagrangian approach. SL-SI-SETTLS also
greatly simplifies for similar reasons. RK-FDC, ETD2RK, and REF still have to
deal with the nonlinear advection as a nonlinear term. The finite differences scheme
RK-FDC is built about the vector invariant form of the equations, where nonlin-
ear advection is not explicit; therefore, it is not clear how to remove the nonlinear
divergence, and we do not present results of this scheme in this case.

The initial period is dominated by linear gravity waves, so that is where we expect
to see benefits of the exponential integration scheme with respect to the semi-implicit
scheme. We show in Figure 4 the errors at day 1 of integration for the unstable
jet test case without nonlinear divergence. It should be noted that for small time-
step sizes the dominating error in the semi-Lagrangian schemes becomes the spatial
interpolation errors, not the temporal. These errors for small time-step sizes may be
reduced by considering the resolution proportional to the time-step size (∆x ∝ ∆t) or
increasing the accuracy order of the semi-Lagrangian scheme. For smaller time-step
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Fig. 5. Numerical solution of the SWEs without nonlinear divergence for the unstable jet test
case at the time of 10 days for the vorticity field using a time-step size of 225 seconds. The box
within each figure shows an amplification of the main vortex formation. (a) SL-SI-SETTLS/SL-
EXP-SETTLS/SL-ETD2RK (identically looking, only plotted one for sake of brevity), (b) ETD2RK.
We can observe more small-scale features for the ETD2RK method around the vortex borders.

sizes, the ETD2RK is the most accurate one, since ETD2RK has all spatial operators
treated spectrally and hence no interpolation errors.

However, the semi-Lagrangian schemes are stable throughout all time-step sizes
tested, whereas the ETD2RK scheme is limited by advection CFL time-step size. In
general, the semi-Lagrangian exponential schemes are more accurate than the semi-
implicit scheme (SL-SI-SETTLS) due to the accurate treatment of the linear waves.
Concluding, the semi-Lagrangian exponential schemes provide a more accurate way,
compared to SL-SI-SETLLS, to extend the time-step size allowed by the traditional
exponential scheme (ETD2RK).

Due to the dynamically unstable (chaotic) nature of the test case, quantitative
analysis of errors in longer periods of time is not usually indicated. However, it
is interesting to see qualitatively how the schemes behave once the vortices have
developed. We show in Figure 5 the vorticity at day 10 for the schemes investigated.
All schemes seem to be able to represent well the vortex formation, but we notice
that the ETD2RK has more oscillations at or around the vortices, whereas the semi-
Lagrangian schemes show smoother vortices.

6.5. Analysis of the full SWEs. In this section, we will analyze the schemes
with respect to the full SWEs, including the nonlinear divergence. In this case, the
RK-FDC schemes will also be included in the analysis. Also, the different semi-
Lagrangian exponential schemes (SL-ETD2RK and SL-EXP-SETTLS) now differ
from each other.

We start by studying the results of all time integration methods at day 1 of the
full SWEs for the unstable jet test case. Convergence plots for varying time-step sizes
are presented in Figure 6. As in the previous test, due to the limitation imposed by
the spatial interpolation used in the semi-Lagrangian schemes, the ETD2RK scheme
provides more accurate results for smaller time-step sizes. The ETD2RK scheme is
again restricted in large time-step sizes by the CFL condition for advection. The
RK-FDC scheme is limited in both time and space: the finite differences scheme
limits the accuracy, and the gravity wave speed CFL limits the time-step size. With
the inclusion of the nonlinear divergence, the SL-EXP-SETTLS scheme turns out
to be unstable when used with large time-steps. Compared to the SL-SI-SETTLS
scheme, the SL-EXP-SETTLS preserves better the high wavenumber gravity waves,
which interact with each other in the nonlinear divergence and become numerically
unstable. Differently, the SL-ETD2RK scheme is stable with large time-steps and is
more accurate than the SL-SI-SETTLS scheme, due to the more accurate treatment
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Fig. 6. Errors on surface height at day 1 of integration of the unstable jet test case for the
full nonlinear SWEs. (a) Maximum absolute error and (b) RMS error. Same as Figure 4 but now
considering the nonlinear divergence.

Fig. 7. Errors vs. wallclock time at day 1 for different time integration methods. Assuming the
request to stay below 100s of wallclock time, we can observe that the SL-SI-SETTLS and SL-EXP-
ETDRK methods provide the best results.

of the linear waves. The theoretical stability analysis of the semi-Lagrangian schemes
is still a matter to be investigated and is here considered only in an empirical sense.
However, we point out an important difference between them: SL-EXP-SETTLS is
a multistep scheme (requiring an extrapolation from a previous time-step), whereas
the SL-ETD2RK is a single step method (apart from the extrapolation used in the
back trajectory calculation). We also notice that SL-ETD2RK seems to be a viable
extension of the ETD2RK scheme to larger time-steps, being more accurate than the
SL-SI-SETTLS.

So far, we have only compared the error with the time-step size of individual
time integration methods. However, the time-step size does not directly relate to the
total computational requirements and therefore also does not relate to the wallclock
time. Although it is challenging to run representative wallclock times studies which
also relate to a fully developed dynamical core running on a supercomputer, we pro-
vide such wallclock time studies in Figure 7. Small wallclock times indicate larger
time-step sizes. Here, we can observe that the exponential semi-Lagrangian scheme
SL-ETD2RK has competitive wallclock times compared to the state-of-the-art SL-
SI-SETTLS method, particularly for small wallclock times. There are, nevertheless,
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Fig. 8. Vorticity field of the full nonlinear SWEs for the unstable jet test case at day 10 using
a time-step size of 112.5 seconds. Images refer to (a) SL-ETD2RK and (b) ETD2RK schemes. The
plot for SL-SI-SETTLS is very similar to SL-ETD2RK and therefore not shown for sake of brevity.

Fig. 9. Numerical solution of the full nonlinear SWEs at time 10 days for the vorticity field
using a time-step size of 225 seconds. (a) SL-SI-SETTLS, (b) SL-ETD2RK.

additional computing requirements of the exponentials, but we would like to point out
that these are the first types of SL-ETDnRK methods and we expect improved results
with further computational, mathematical, and modeling optimizations. Again, we
also observe a limitation of the accuracy for all semi-Lagrangian methods for small
time-step sizes due to the second order accuracy in space. For high accuracy regimes,
with small time-step sizes, the ETD2RK scheme provided the best results.

Now, we study results for different time integration methods at day 10 of the
benchmark. The vorticity fields for two different schemes (SL-ETD2RK, ETD2RK)
are depicted in Figure 8, where, since SL-SI-SETTLS provides results similar to SL-
ETD2RK, this scheme was not depicted. They are again qualitatively very similar,
although the ETD2RK shows more high wavenumber oscillations around the vortices.

For larger time-step sizes, due to the extra energy in the high wavenumber gravity
waves, the SL-ETD2RK triggers small turbulence-like features after long runs when
compared to SL-SI-SETTLS which is illustrated in Figure 9.

Finally, this motivates us to investigate the energy spectrum for selected time
integration methods and parameters; see Figure 10. If there is no dissipation of near
grid scale energy for the SL-ETD2RK scheme, this energy destabilizes the jet into
smaller-scale features. This can be clearly observed in the energy spectrum, where we
also notice that the ETD2RK scheme gathers more energy in the smaller scales and
the SL-SI-SETTLS with large time-step has the least amount of energy in the smaller
scales.

6.6. SWEs with term specific diffusion. For the purpose of weather and
climate simulations, a certain amount of small-scale dissipation is usually required,
either from a numerical stability perspective or from a physical point of view. The
SL-SI-SETTLS scheme, when used in the full IFS dynamical core, adopts a spectral
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Fig. 10. Kinetic energy spectrum for different methods and time-step sizes for the full nonlinear
SWEs at day 10 of integration. We can observe that the scheme SL-ETD2RK with 225 seconds
time-step has developed less energy in large wavelengths and more energy in small wavelengths. The
ETD2RK scheme has more energy in the small wavelengths, and SL-SI-SETTLS with time-step of
225 seconds has the least amount of energy in small scales.

hyperdiffusion filter in the momentum equations in order to both numerically stabilize
the scheme and physically dissipate energy from the small-scale energy tail (see [25]
for an analysis of the impacts of the diffusion in a global spectral model and [32] for a
comprehensive discussion on the use of diffusion in atmospheric models). We remark
that in full models this energy in high wavenumbers could be used to model physical
subgrid properties, such as convection.

With the semi-Lagrangian exponential scheme, it is possible to preserve the pre-
cise dispersion of linear waves and apply a term specific dissipation in the nonlinear
divergence term. This way, linear waves (long and short) are treated accurately, but
only the longer waves originated from the nonlinear interactions are preserved in the
model. This allows the model to be numerically stable without damping the linear
waves and also provides dissipation of small-scale features generated by the additional
energy in high wavenumbers excited by the exponential integration.

In the analysis that follows we consider an implicit spectral diffusion filter (µ∇2)
applied only to the nonlinear divergence term with µ the diffusion coefficient.

We start by analyzing different diffusion coefficients with the kinetic energy spec-
trum of the SL-ETD2RK scheme at day 10. Figure 11a shows the amount of diffusion
required to obtain a solution along the lines of the SL-SI-SETTLS with a time-step
size of 900 seconds, and, following these results, we will adopt µ = 25.6× 106 m2s−1.
This value is similar to what is actually used in weather forecasting systems for the
full equations, whereas here, we are only considering it for the nonlinear divergence.

Next, we investigate error comparisons at day 1 of integration shown in Figure 12.
We can observe that the two semi-Lagrangian exponential schemes deliver more
accuracy compared to the SL-SI-SETTLS scheme. However, the following results
will reveal significant differences in the two semi-Lagrangian exponential schemes for
larger time integration ranges.

Finally, we time integrate to day 10 and investigate the different time integration
methods, with the vorticity field depicted in Figure 13. Despite the implicit diffusion,
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Fig. 11. (a) Kinetic energy spectrum considering an implicit diffusion filter on the nonlinear
divergence term various values of µ (12.8, 25.6 and 51.2× 106 m2s−1) for the SL-ETD2RK scheme
and no diffusion for the SL-SI-SETTLS scheme. (b) Kinetic energy spectrum considering an implicit
diffusion on the nonlinear divergence term with µ = 25.6×106 m2s−1 for the schemes and parameters
shown in Figure 13.

Fig. 12. Errors at day 1 of integration of the unstable jet test case for the full nonlinear SWEs
with implicit diffusion on the nonlinear divergence term (µ = 25.6× 106 m2s−1).

the ETD2RK scheme is still not able to do time-step sizes as large as the semi-
Lagrangian schemes due to the instability originating from the nonlinear advection
term. In Figure 11 we show the kinetic energy spectra of the results shown in Figure
13, where one may note the effects of the filtering in the small-scale features. As before,
the SL-EXP-SETTLS scheme is unstable for large time-steps and the diffusion was not
able to circumvent this instability. However, the SL-ETD2RK scheme with diffusion
now does not develop near grid scale features (see Figure 8(b) for comparison) even
with a time-step size of 900 seconds.

7. Concluding remarks. Semi-Lagrangian schemes and exponential integra-
tors both play important roles in different applications. The exploration of a mixed
formulation is a challenging problem, partially tackled in this paper. We show a
novel approach that combines these methods by exploring the exponential integration
formulation in terms of material derivatives.

The approach may be helpful for users of standard exponential integration tech-
niques, extending these to larger time-step sizes preserving accurate solutions. Also,
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Fig. 13. Numerical solution of the full SWEs at time 10 days for the vorticity field using
implicit diffusion on the nonlinear divergence term with µ = 25.6× 106 m2s−1. (a) SL-SI-SETTLS
with ∆t = 900s, (b) SL-ETD2RK with ∆t = 900s, (c) ETD2RK with ∆t = 225s, (d) SL-EXP-
SETTLS with ∆t = 225s.

from the application of weather and climate modeling perspectives, the method shows
a way to improve the dispersion properties of a well-established scheme, therefore bet-
ter representing fast linear gravity waves with competitive computational cost.

The results presented in this paper show the potential benefits of the combination
of these different methods, semi-Lagrangian and exponential integration, in a specific
scenario of rotating SWEs. Nevertheless, it also points out means of using such an
approach in other equation sets that present both nonlinear advection and stiff linear
operators, such as the Euler equations in fluid dynamics. We highlight, however, that
the development of exponential schemes for fluids that develop shocks, for which the
use of conserved variables is usually preferred, still represents a challenge.

Appendix A. Lack of commutation between linear operator and in-
terpolation at trajectory points. Consider a general vector ~w ∈ Rn, a linear
operator T ∈ Rn × Rn, which will represent here, for example, a matrix exponential,
and I~x : Rn → Rn, an interpolation operation with respect to points ~x ∈ Rn. Fol-
lowing the semi-Lagrangian notation for interpolation, we may concisely write that
I~x(~w) = ~w∗, where the ∗ implicitly indicates the interpolation with respect to ~x. This
section is just to point out a simple example to illustrate that even in very simple
cases (T ~w)∗ 6= T (~w∗).

Consider a one-dimensional periodic grid with uniformly spaced points (xi)i=1,n,
with distance ∆x from each other. In this example we will consider a scalar advection
with constant velocity given by ∆x/∆t so that, after one time-step, the departure
points will be a simple translation and will match exactly their left neighbors. That
is, the trajectory goes from tn to tn+1 carrying the function value at xi−1 to the xi
point. In this case, the interpolation to departure points will be given by a periodic
shift in the indexes,

I~x(~w) = I~x([w1, w2, w3, . . . , wn]) = [wn, w1, w2, . . . , wn−1] = ~w∗.(45)

Note that the operator I~x is a linear operator.
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Now consider a simple diagonal linear operator T = (αii)i=1,n with αii 6= αjj for
j 6= i. In this case,

(T ~w)∗ = ([α11w1, α22w2, w3, . . . , αnnwn])∗(46)

= [αnnwn, α11w1, α22w2, w3, . . . , α(n−1)(n−1)wn−1],

but

T (~w∗) = T [wn, w1, w2, . . . , wn−1] = [α11wn, α22w1, . . . , αnnwn−1].(47)

Therefore, even if the trajectories are constant (or linear), the commutation does not
generally hold.

In the more general case treated in the derivation of the semi-Lagrangian exponen-
tial scheme, the trajectories are nonlinear. Also, the linear operator is not necessarily
diagonal, but one could think of its diagonalized version in complex space in a similar
way, for which the terms in the diagonal would be the eigenvalues of the operator.
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