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05508-090, São Paulo SP, Brazil. E-mail: pedrosp@ime.usp.br

This article is published with the permission of the Controller of HMSO and the Queen’s Printer for Scotland.

Shallow-water models are often adopted as an intermediate step in the development of
atmosphere and ocean models, though they are usually tested only with fluid depths relevant
to barotropic fluids. Here we investigate numerical instabilities emerging in shallow-water
models considering small fluid depths, which are relevant for baroclinic fluids. Different
numerical instabilities of similar nature are investigated. The first one is due to the adoption
of the vector-invariant form of the momentum equations, related to what is known as
the Hollingsworth instability. We provide examples of this instability with finite-volume
and finite-element schemes used in modern quasi-uniform spherical-grid-based models.
The second is related to an energy conserving form of discretization of the Coriolis term
in finite-difference schemes on latitude–longitude global models. Simple test cases with
shallow fluid depths are proposed as a means of capturing and predicting stability issues that
can appear in three-dimensional models using only two-dimensional shallow-water codes.
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1. Introduction

In the development of an ocean or atmosphere model it is
important to establish that the numerical methods used are
stable. In practice, a mathematical stability analysis might not
be tractable, for example if the geometry, grid structure, or
background state are not simple enough; in that case stability can
only be determined by empirical tests. It may also be the case
that a mathematical analysis is not done because a particular type
of instability was not anticipated. It is highly desirable to be able
to identify any instability of some candidate numerical method
before investing the effort to develop a three-dimensional model.
Shallow-water models are often adopted as an intermediate
step in the development of atmosphere and ocean models and
can be useful in testing the stability of numerical methods.
However, standard numerical test cases (e.g. Williamson et al.,
1992; Galewsky et al., 2004; Shamir and Paldor, 2016) are
usually run with fluid depths of thousands of metres, relevant
to barotropic fluids. In this paper we point out the usefulness
of spherical shallow-water models run with very shallow fluid
depths, mimicking the internal modes of three-dimensional
models, for testing the stability of numerical methods.

Hollingsworth et al. (1983) discovered that an implementation
of a well-known energy- and enstrophy-conserving scheme,

originally due to Sadourny, when used in a hydrostatic primitive
equation model (Burridge and Haseler, 1977), was prone
to near-grid-scale instabilities, with severe consequences for
high-resolution forecasts. This kind of instability is intrinsically
related to the use of the vector-invariant form of the momentum
equations (e.g. Vallis, 2006), which expresses the advection of
momentum as

v · ∇v = ∇K + ζk × v, (1)

where v = (u, v) defines the horizontal velocities, K = ‖v‖2/2 is
the kinetic energy, ζ = k · ∇ × v is the relative vorticity and k is a
unit vector pointing normal to the horizontal surface. Expanding
the differential expressions, and looking at the equations for each
velocity component separately, one notices that on the left-hand
side of the above relations there are no derivatives of v in the u
equation, and no derivatives of u in the v equation. In contrast, we
see that these derivatives exist in each of the two terms on the right-
hand sides, respectively, but they cancel out. The cancellation is
a general feature of this formulation of the equation, and exists
independently of the particular choice of coordinate system.

In numerical schemes, this cancellation is not always exact, and
this may lead to stability issues. This is what happens with the
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original energy- and enstrophy-conserving scheme of Sadourny
(Burridge and Haseler, 1977), hereafter referred to as the ‘EEN’
scheme. Hollingsworth et al. (1983) proposed a modification
of the scheme to ensure cancellation at a discrete level of the
linearized equations, avoiding the instability while preserving its
conservation properties. Similarly, the energy- and enstrophy-
conserving scheme of Arakawa and Lamb (1981), hereafter
referred to as the ‘AL’ scheme, was also shown to be prone to such
instabilities, and again a modification was proposed to avoid it.

There has been a renewed interest in these instabilities, as
the vector-invariant form of the momentum equations have
recently been adopted in many novel atmospheric and ocean
models on quasi-uniform spherical grids (e.g. Tomita et al., 2008;
Skamarock et al., 2012; Gassmann, 2013; Wan et al., 2013; Ringler
et al., 2013). As a consequence, novel high-resolution ocean and
atmosphere models are presenting instabilities of a similar nature
(e.g. Skamarock et al., 2012; Gassmann, 2013). A problematic
point is that such instabilities are only being detected once the
full 3D model is implemented, as no trace of instability is usually
detected in shallow-water prototypes.

Bell et al. (2017), hereafter referred to as BPT, examined
the instability for the two well-known energy- and enstrophy-
conserving schemes, the EEN and AL schemes, for the
vector-invariant hydrostatic Boussinesq equations. As found by
Hollingsworth et al. (1983), the schemes were shown to be linearly
unstable for height coordinate models. Also, BPT showed that it
is possible to detect such instabilities on shallow-water versions
of the schemes, as long as the model adopts a small equivalent
depth, that is, the shallow-water layer is very thin. This allows
easy testing of novel and existing schemes for unstable linear
modes of similar nature to the original instability detected by
Hollingsworth et al. (1983). All the analysis of BPT was performed
for planar quadrilateral grids, but it suggests a way of testing for
the instability on more general discrete domains, such as the
quasi-uniform spherical ones.

Shallow-water models considering small equivalent depths are
directly related to reduced gravity layer models (e.g. Vallis, 2006).
Reducing the inertia-gravity wave speed increases the importance
of the nonlinear terms, such as advection terms in the shallow-
water equations, and so exacerbates the effect of any numerical
errors in those terms. Gassmann (2011) shows an experiment that
mimics the case of relatively small equivalent depths occurring
in atmospheric models using a planar triangular-hexagonal grid
shallow-water model. The results allow interpretation, within a
simpler 2D shallow-water framework, of how a checkerboard
divergence mode is expected to interfere in a 3D model. Similarly,
Peixoto (2016) uses a shallow-water experiment with reduced
depth to illustrate and foresee inaccuracies that might appear due
to the finite-volume discretizations of the nonlinear terms on
quasi-uniform spherical grids.

The main goal of this article is to discuss possible numerical
instabilities that may arise in shallow-water spherical models
when small equivalent depths are adopted. Two different kinds
of instabilities that appear in linear analysis for the equations
linearized about a non-resting basic state with small depth are
analysed. One of the instabilities is the one arising from the
use of the vector-invariant form of the momentum equations,
which is of similar nature to that of Hollingsworth et al. (1983)
and is what motivated this study. The other instability occurs in
a latitude–longitude C-staggered semi-Lagrangian semi-implicit
finite-differences model, as used, for example, in the Unified
Model of the UK MetOffice, also known as ENDGame (Wood
et al., 2014). The scheme used in ENDGame is based on the
discretization proposed in Zerroukat et al. (2009), where the
Coriolis term discretization, brought forward from Thuburn
and Staniforth (2004), was inspired by the work of Arakawa
and Lamb (1981). Therefore, the two cases analysed are more
intimately related than it would seem at first, as will be discussed
in what follows.

A key concept used in this article is that the stability analysis
of three-dimensional models may be done by separating the

linear modes into horizontal and vertical parts, and these are
connected by equivalent depths. A discussion of the equivalent
depths emerging in typical three-dimensional sets of equations is
presented in section 2, followed by a discussion of how different
vertical coordinates may be interpreted either using depth-
weighted or non-depth-weighted vorticity terms in shallow-water
systems. Based on these discussions, we can thereafter limit our
attention only to shallow-water equations, but with conclusions
that can be interpreted for three-dimensional models.

In section 3 we discuss the influence of the Coriolis force in
the Hollingsworth instability, showing that the instability exists
even in models without Coriolis terms. Section 4 presents the
common framework of tests and methods that will be used
to investigate several different spherical shallow-water models.
Section 5 examines the Hollingsworth instability in quasi-uniform
spherical grids, such as cubed and icosahedral spheres, for
finite-volume and finite-element schemes. Section 6 analyses the
instabilities detected for ENDGame, starting from an analytical
examination of the linear modes on a plane, followed by numerical
experiments on the sphere.

2. From 3D models to 2D analyses

2.1. Equivalent depths in 3D models

A relatively good approximation to ocean dynamics is to consider
the hydrostatic, incompressible, adiabatic, Boussinesq equations.
The linearized Boussinesq equations enjoy separable solutions
(Gill, 1982; Vallis, 2006), and the important terms connecting
the vertical and horizontal modes are the equivalent depths,
which are eigenvalues of the vertical mode problem. These are
named equivalent depths because they give rise to shallow-
water systems with such mean fluid depth. Bell et al. (2017)
analyse the Boussinesq equations considering a constant Coriolis
parameter plane and two vertical coordinate systems: height and
isopycnal. The numerical vertical modes are investigated for a
Lorenz and a Charney–Phillips staggering, respectively for height
and isopycnal coordinates, and estimates of equivalent depths for
real application parameters are discussed. On a Charney–Phillips
grid, considering 100 vertical layers, typical ocean parameters can
result in equivalent depths of less than a metre. The Lorenz grid
has equivalent depths inversely proportional to the square of the
number of modes, so when many vertical levels (e.g. 100) are used,
this may result in equivalent depths smaller than millimetres.

Many weather and climate models adopt the primitive
equations for modelling the atmospheric dynamics (Lauritzen
et al., 2011; Holton and Hakim, 2012). Similar vertical versus
horizontal separation is also possible for the linearized primitive
equations, and again the key connecting parameters are the
equivalent depths (Tribbia and Temam, 2011). Terasaki and
Tanaka (2007) investigated the equivalent depths occurring in
the primitive equations. For a fully spectral analysis and standard
atmospheric parameters, considering 22 vertical spectral modes,
the minimum equivalent depth calculated was about 8 m. Also,
Kasahara and Puri (1981) perform a full analysis of the 3D
modes and calculate the equivalent depths emerging for this kind
of equation set for a sigma coordinate model. An example for a
model discretized vertically with finite differences with nine sigma
levels shows that the smallest equivalent depth is 3 m. The smaller
equivalent depth estimated in Kasahara and Puri (1981), even
with only nine levels, is due to use of a vertical finite-difference
scheme, whereas Terasaki and Tanaka (2007) consider a spectral
vertical analysis.

High-resolution global atmospheric models often adopt the
full, non-hydrostatic, compressible Euler equations. Under the
shallow atmosphere approximation, the linear compressible Euler
equations have normal mode solutions that separate into a
product of a vertical structure function and a horizontal structure
function; however, in contrast to the hydrostatic case, the vertical
structure equation involves the mode frequency (Daley, 1988).
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Consequently, the horizontal structure equation no longer has
a single equivalent depth independent of the mode frequency.
Nevertheless, for gravity modes with large vertical wavenumber,
which are the most problematic modes for the instabilities of
interest here, non-hydrostatic effects are rather weak. Therefore,
analysis based on the hydrostatic assumption, particularly the
smallest equivalent depths, should give a useful indication of
model behaviour in the non-hydrostatic case too.

To summarize, in realistic atmosphere and ocean models the
equivalent depth of higher internal modes is expected to be
small (only a few metres or smaller), and can be much smaller
depending on the vertical coordinate and grid adopted.

2.2. Form of the vorticity term, and relation to vertical coordinate
systems

For the vector-invariant form of the shallow-water equations,
there are two distinct ways of writing the vorticity term:

(f + ζ ) k × v and q k × ηv, (2)

where f is the Coriolis parameter, η is the fluid depth, and
q = (f + ζ )/η is the potential vorticity. We will refer to these
as the non-depth-weighted form and depth-weighted form,
respectively. For the continuous equations the two forms are
equivalent, but this is no longer the case after discretization. The
depth-weighted form is attractive because it facilitates the design
of numerical schemes that conserve potential-vorticity-related
quantities such as potential enstrophy (Arakawa and Lamb, 1981;
Ringler et al., 2010). Importantly, the presence or absence of
depth weighting can affect the stability of the scheme (BPT, also
see below).

A similar distinction arises when the advective form of the
momentum equation is used, except that now only the Coriolis
term is affected. The non-depth-weighted and depth-weighted
forms are

f k × v and
f

η
k × η v, (3)

respectively.
When analysing the stability of a three-dimensional numerical

method by separation into a vertical-structure problem and a
shallow-water problem, it is important to determine which form
of the vorticity term is appropriate. The form of the vorticity
term in a three-dimensional model is closely related to the type
of vertical coordinate it uses.

Layer-based vertical coordinates offer the flexibility to choose
either a depth-weighted or a non-depth-weighted discretization
of the vorticity term, and the depth-weighted option is a
common choice. By ‘layer-based vertical coordinate’ we mean
one that carries some quasi-Lagrangian information about
the thickness of material layers. Common examples of layer-
based coordinates include isentropic, isopycnal, and Lagrangian
coordinates. Throughout much of the atmosphere, diabatic
heating is weak and potential temperature θ is approximately
materially conserved. Thus isentropic surfaces (surfaces of
constant θ) are approximately Lagrangian surfaces, and a
coordinate system with θ as the vertical coordinate provides
a quasi-Lagrangian coordinate system that has some attractive
features for atmospheric modelling (e.g. Hsu and Arakawa, 1990).
In an analogous way, potential density is approximately materially
conserved throughout much of the ocean, providing the basis for
an isopycnal vertical coordinate (e.g. Bleck and Boudra, 1981).
For atmospheric modelling a Lagrangian vertical coordinate, in
which a set of material surfaces are used to define the vertical
coordinate, has also been used (e.g. Lin, 2004). In practice all
such models require some measures to ensure that model layers
do not fold over or become too thin. Nevertheless, they all carry
information about the thickness of quasi-Lagrangian layers and
so can use the depth-weighted vorticity or Coriolis terms.

In level-based coordinates, on the other hand, the non-depth-
weighted form of the vorticity term is generally used. Level-based
models adopt a monotonic variable, such as geometric height, to
define fixed vertical levels. For the present discussion, pressure-
based coordinates and mass-based coordinates, including their
terrain-following variants, should also be thought of as level-
based. Although the height of pressure levels or mass levels
can vary in time, these variations are relatively small. Level-
based coordinate systems do not carry direct information on the
thickness of material layers. In principle some estimate of material
layer depth such as (∂θ/∂z)−1 could be calculated in order to use
a depth-weighted vorticity term; however, the numerical errors
in this estimate would affect small vertical scales and would need
to be accounted for in any stability analysis.

In some height-, pressure-, or mass-based atmospheric models
the vorticity or Coriolis terms are weighted by density or by
a pseudo-density proportional to density times model layer
thickness (e.g. Skamarock et al., 2012; Wood et al., 2014; Dubos
et al., 2015). However, local variations in density are relatively
small, so this density weighting does not have the same effect as
depth weighting. Similarly, the thickness of model layers does not
correspond to the thickness of material layers (Arakawa, 2000), so
pseudo-density weighting does not have the same effect as depth
weighting. Therefore, models based on such coordinate systems
must be interpreted as using non-depth-weighted vorticity or
Coriolis terms and analysed accordingly.

3. The role of the Coriolis force in the Hollingsworth
instability

We discussed in the introduction how the Hollingsworth insta-
bility is connected to the vector-invariant form of the momentum
equations through the lack of a certain discrete cancellation.
The term responsible for the lack of cancellation solely involves
momentum advection, so it might be expected that the Coriolis
term should play no role in the existence of such instability.

Lazić et al. (1986) observed that real data runs of a 3D finite-
difference ECMWF∗ model, which used the original energy- and
enstrophy-conserving EEN scheme, collapsed after a couple of
days, showing accumulation of energy in short waves with the
instability naturally linked to the Hollingsworth problem. They
performed a linear analysis of a planar shallow-water version
of the model discretized with the EEN scheme considering
a constant background velocity field and a constant Coriolis
parameter. Confirming the results from Hollingsworth et al.
(1983), the shallow-water model was shown to be linearly
unstable. Interestingly though, the system was shown to be stable
if the Coriolis parameter was set to zero.

Following the analysis of BPT it is possible to show analytically
that indeed for a constant basic background velocity and null
Coriolis parameter the system is neutrally stable. Since this was
not explicitly proven in either BPT or Lazić et al. (1986), we
describe the proof in Appendix A. Also, BPT show how the
non-dimensional growth rate (ωi) of the instability is related to
the Coriolis parameter, and that it is stronger for larger grid
Rossby numbers, and do not show what happens in the case
of absence of rotation (f0 = 0). BPT normalize the growth rate
using the Coriolis parameter, so that the dimensional growth
rate is actually f0ωi. An increase in the grid Rossby number,
considering a fixed grid and fixed velocity, is related to the
decrease of the Coriolis parameter (f0). BPT shows that with
increasing grid Rossby number the non-dimensional growth rate
(ωi) also increases, but this increase in ωi is small compared
to the decrease in f0. So, in fact, the dimensional growth rate
ωif0 reduces with a reduction of f0, even with an increase of the
grid Rossby number. In the limit, the dimensional growth rate

∗European Centre for Medium-range Weather Forecasts.
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is zero once f0 is also zero, in agreement with the analysis of
Appendix A.

This all goes against our intuition about the known source of
the instability, which is the lack of discrete cancellation of terms
related to momentum advection solely. This is elucidated in what
follows.

The momentum advection plus Coriolis term may be written
in vector-invariant form as

v · ∇v + f k × v = ∇K + (ζ + f ) k × v, (4)

where we see that the Coriolis term is added to the vorticity
term. The basic velocity states used in both analysis, BPT and
Lazić et al. (1986), did not have background vorticity. Following
the notation from BPT for the planar analysis, let us impose a
non-rotating (f0 = 0) system, but add a background basic flow
with vorticity as

u = u1 − ζ0y, v = v1 + ζ0x, (5)

where u1, v1 are constant velocities and 2ζ0 will be the basic flow
vorticity. Assume a constant basic depth, η0, and let the bottom
topography (b) be used to ensure steady state as

gb = gb0 + ζ0(v1x − u1y) + ζ 2
0

2
(x2 + y2), (6)

where g is the gravity constant and b0 is a constant.
With this basic state, performing the linear analysis would lead

to a set of stability equations that depend on the position (x, y).
By assuming that the disturbances are of small scale compared
with that on which the zonal flow varies, that is, that terms
involving perturbation variables times position variables (x or
y) are neglected, this dependence disappears. As a consequence,
simple calculations show that all that changes in the linear
equations derived in BPT is that ζ0 appears instead of f0. Therefore,
the system with f0 = 0, but with background vorticity ζ0 �= 0, is
unstable and subject to exactly the same analysis as done in
BPT for the height coordinate model. We clearly see that the
Coriolis term is acting as a background vorticity, which seems to
be necessary to trigger the instability. Also, one could interpret
the relationships between the Rossby numbers and the instability
growth rates simply as Rossby numbers relative to the background
vorticity of the flow, not necessarily related to the Earth rotation.

Summarizing, although the Coriolis term plays no role in the
lack of cancellation that leads to the existence of the instability,
it can influence the instability as a source of vorticity in the
vector-invariant momentum equations. Also, in the absence of
rotation (f0 = 0), the EEN scheme is still linearly unstable when
the background state has non-zero vorticity and varies slowly
between grid points.

In spherical geometry one cannot define a continuous constant
vector field over the whole surface. Therefore, basic states used
for linear analysis naturally have some source of divergence or
vorticity. Simple basic states, such as the purely zonal flows that
will be defined next in section 4, should have enough vorticity to
trigger the instability even without the Coriolis term.

4. Test case

In this section we describe a zonal balanced flow test case that
mimics small equivalent depth behaviours in spherical shallow-
water models. This will be used to analyse the stability properties
of several schemes in later sections. Shallow-water models based
on either non-depth-weighted or depth-weighted Coriolis terms
will be considered, as defined in section 2.2. The test is based on
existing spherical shallow-water tests (Williamson et al., 1992)
and is intended to be very simple to implement in existing codes.
Consider as basic state a constant fluid depth η0, which is used to
mimic small equivalent depths and may vary from millimetres to

a few metres, and a zonal flow (u = u0 cos(φ), v = 0), with
maximum velocity given by u0 = 2πa/12 days ≈ 38.6 m s−1,
where φ is the latitude and a = 6.371 km is the Earth radius.
The bottom topography is then used to ensure a steady state,

b = 1

g

(
a	u0 + u2

0

2

)
sin2(φ), (7)

where g = 9.80616 m s−2 is the gravity constant and 	 =
7.292 × 10−5 rad s−1 is the rotation rate of the Earth. The test
should be set up identically as in test case 2 of Williamson et al.
(1992), except that the topography is used to balance the flow
to become steady state, and the depth is defined to be constant
(η0). A good starting point for the constant depth is to assume
η0 = 1 m, but some models may require tests with smaller depths.
As in the Williamson et al. (1992) test cases, all the experiments
performed in this study do not use any additional perturbation to
the initial conditions, as the numerical errors are enough to allow
possibly existing unstable modes to emerge. Schemes that exactly
represent the initial steady state may need a small perturbation
in the initial conditions to allow an investigation of the unstable
modes.

For the analysis of the Hollingsworth instability, this test may
be run without the Coriolis term (	 = 0), since the instability
happens due to the lack of a discrete cancellation of advection
terms solely.

The theoretical linear analysis for spherical models can be rather
complicated, particularly on unstructured spherical grids. Also,
numerical implementations of schemes for spherical shallow-
water models rarely allow the possibility of running linear
shallow water only. Nevertheless, it is not difficult to numerically
investigate the eigen-structure of the most unstable modes
with slight modifications of a nonlinear shallow-water code.
In this work, we use a variation of the power method for small
perturbations, which is fully described in Appendix B.

The output of the method is the value of the largest growth
rate of a possibly existing unstable mode, which can be used to
infer the e-folding time (time for the numerical solution to grow
by a factor of e), and its associated eigenvector, which describes
the spatial structure of the unstable mode.

5. Instabilities on quasi-uniform spherical grids

In this section we investigate the stability of spherical
shallow-water models that adopt the vector-invariant form of
the momentum equations and quasi-uniform spherical grids
(Staniforth and Thuburn, 2012) considering small equivalent
depths.

5.1. Analysis of finite-volume schemes on icosahedral grids

For recently developed schemes that use spherical unstructured
grids, it is very difficult to derive formulations in which the
advection term is decomposed into vortical and kinetic energy
terms in a way that satisfies the cancellation property in
the discrete sense. Considering mimetic finite-volume schemes
for hexagonal–pentagonal grids (Voronoi grids), following the
discretizations proposed in Thuburn et al. (2009) and Ringler
et al. (2010), hereafter named TRSK, no discrete cancellation is
expected and the model is prone to being unstable. Shallow-water
experiments with TRSK on the sphere (Ringler et al., 2010; Weller
et al., 2012; Peixoto, 2016) did not reveal instabilities related to
the non-cancellation issue of the vector-invariant momentum
equations. Nevertheless, Skamarock et al. (2012) and Gassmann
(2013) show that the instability indeed appears in 3D models.
We will show here that the main point for the instability not to
appear in the shallow-water models was that the growth rates of
the instability were too small because of the large fluid depths
adopted and the run-time scales tested.
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TRSK is well suited for icosahedral grid-based models.
Icosahedral grids can be initially built based on a triangulation
of the sphere (a Delaunay grid), but usually the dual grid (its
Voronoi diagram) is adopted for the finite-volume computational
cells (Staniforth and Thuburn, 2012). All test cases here use a
dual Voronoi (hexagonal–pentagonal) grid of level 5, which has
10 242 computational cells (12 regular pentagons and 10 230
not necessarily regular hexagons) which corresponds to an
approximate grid resolution of 240 km. This resolution may
not adequately resolve the Rossby radius of deformation in
most experiments performed below, but it is fine enough to
investigate the stability of the scheme in a non-time-consuming
way. Section 5.3 gives further discussion of this point.

The grids used here adopt a Spherical Centroidal Voronoi
Tessellation (SCVT), which slightly modifies the original
icosahedral grid cell nodes to ensure that they are very close
to the centroid of the Voronoi cell that they define (Ju et al.,
2011). In what follows, all figures that show spatial distribution
of a scalar field on this grid will also show the Voronoi diagram
associated with the basic triangular icosahedral grid, to serve as
reference of the underlying grid structure. A four-stage fourth-
order explicit Runge–Kutta was used as the time-stepping scheme
with a time step of 400 s.

The original TRSK scheme is proposed to ensure total energy
conservation (within time truncation error) and compatibility
with the potential vorticity equation. To achieve this, the vorticity
terms are weighted by the layer depth. We start the analysis with
this original depth-weighted (DW) formulation and later show
how the scheme behaves with a non-depth-weighted (NDW)
formulation, which should be more closely related to the results
of Skamarock et al. (2012) and Gassmann (2013), since they adopt
level-based vertical coordinate systems.

5.1.1. Zonal balanced flow with no Coriolis force for
depth-weighted TRSK

We start the analysis with the zonal balanced flow described
in section 4, but without the Coriolis force (	 = 0), just to
illustrate that indeed the Hollingsworth instability can be triggered
independently of a Coriolis force. Using the original TRSK scheme
(depth-weighted) and a constant fluid depth of 1 m, the model
is unstable and the linear analysis shows that the most unstable
mode has a growth rate with e-folding time of 25.7 days, and
eigenvector shown in Figure 1. We see that the mode is related to
the underlying grid structure. For a depth of 0.1 m, the e-folding
time reduces to 19.5 days, and for a depth of 0.01 m the e-folding
time drops to 5.2 days. For large depths, such as 100 m or larger,
the model does not blow up in run-times of up to 1 year.
This example shows how the Hollingsworth instability exists
independently of the Coriolis force. Nevertheless, since most
atmosphere and ocean models do have the Coriolis term included,
we will continue with further analysis using only the test with
Coriolis force included.

5.1.2. Zonal balanced flow with Coriolis force for depth-weighted
versions of TRSK

We will now consider the test of balanced zonal flow with rotation,
as described in section 4. Adopting a constant fluid depth of 1 m,
we show in Figure 2(a) the error in the depth field for the TRSK
scheme after 14.5 days, which is a few time steps before the model
blows up. The model is clearly unstable and Figure 2(b) shows
the dominant eigenvector. Both the error and the eigenvector
patterns seem to be related to geometric properties of the grid,
which agrees with previous knowledge of grid imprinting often
observed in this kind of model (Weller et al., 2012; Peixoto
and Barros, 2013), but they do not match each other exactly.
The method used for the linear analysis is sensitive to possibly
very close eigenmodes, which may be hard to separate. Also,
nonlinear effects may influence the patterns in the full model run.

ICOS-TRSK-NOROT Dominant eigenvector
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Figure 1. Dominant eigenvector for the depth field deviation from basic state
with constant mean depth of 1 m for the TRSK scheme considering the zonal flow
test case without Coriolis force.

Nevertheless, both patterns seem to indicate that the unstable
mode is stronger near edges of the original icosahedral dual grid.

The blue line in Figure 3, referring to the TRSK scheme,
shows the e-folding times of the instability for various depths.
The instability is noticeably stronger for smaller depths, almost
reaching an e-folding time of approximately 1 day. For the depths
adopted in standard shallow-water test cases (Williamson et al.,
1992), which are of about 10 km, the growth rate is so small that
one would not observe instabilities even in long runs (of many
years). For the high-resolution 3D models discussed in section 2,
which have very small equivalent depths, we are very likely to
be in the region where the e-folding time is near to 1 day. This
can have significant impact in medium- and long-range weather
forecasts, and also in long climate simulations for either the ocean
or the atmosphere.

Gassmann (2013) analysed the instability problem on planar
regular hexagons and did not find a way to modify the
kinetic energy discretization to ensure exact discrete cancellation.
Nevertheless, a discretization that minimizes the non-cancellation
effect is suggested. In 3D models this scheme was shown to reduce
the effects of the instability in standard baroclinic wave test cases
(e.g. Skamarock et al., 2012; Gassmann, 2013). The stable results
observed are of course very important to enable practical usage of
such schemes, but no warranty of stability is established. In fact,
it might be the case that other experiments, or longer run-time
periods, reveal the instability.

We examined the scheme proposed by Gassmann (2013)
(hereafter denoted as the GASS scheme) using the the zonal flow
test case with Coriolis force. Considering 1 m constant depth, it
blows up shortly after 5 days. Figure 4(a) shows the error in the
depth field a few steps before blowing up. The errors dominate
at the centre of the original pentagons of the icosahedral grid, so
they are clearly connected to the grid structure. The linear analysis
of this scheme, confirms the lack of stability, and the pattern of
the dominant eigenvector is given in Figure 4(b) and also shows
larger values near the centre of the original pentagons. We notice
that the blow-up time in this case was sooner than that of the
original TRSK scheme. This is confirmed by the calculation of the
e-folding time, which is smaller for the GASS scheme (Figure 3
for 1 m depth).

The above result is somewhat counter-intuitive compared
with the previous results discussed by Skamarock et al. (2012)
and Gassmann (2013) for 3D models, since in this scenario the
modification seems to have worsened the stability of the scheme.
There are two main points here. First, these 3D models can be
more naturally classified as having non-depth-weighted vorticity
terms, since the vorticity is weighted by density, not the layer
depth. A non-depth-weighted version of the TRSK scheme will
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Depth deviation at 14.5 days Dominant eigenvector(a)
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Figure 2. (a) Depth field deviation from a basic state with mean depth of η0 = 1 m for the depth-weighted TRSK scheme at time 14.5 days considering the zonal flow
test case with Coriolis terms. The stopping time is only a few time-steps from blow-up. (b) Dominant eigenvector for the depth field deviation from basic state with
constant mean depth of 1 m.
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Figure 3. E-folding times (days) for different mean fluid depths (η0) and different
finite-volume schemes with depth-weighted vorticity terms (TRSK, GASS and
PXT).

be investigated later in this article. Also, both models use a Lorenz
vertical grid, which, as discussed in section 2, is related to very
small equivalent depths (much smaller than the 1 m tested here).
For smaller equivalent depths, the GASS scheme has e-folding
time larger than the original TRSK scheme, as one can see in
Figure 3, noting that the two lines cross at about half a metre. For
example, for a depth of 0.1 m, TRSK has e-folding of 1.56 days
and GASS has 1.8 (the growth rate is approximately 15% slower
with the GASS scheme).

The modified kinetic energy proposed by Gassmann (2013) is
based on a linear combination of the original kinetic energy used
in TRSK, defined at cell centres and which we will denote as Kc,
and a kinetic energy Kv, calculated based on the kinetic energies
obtained from the triangles surrounding the cell, which results
in the total kinetic energy K = αKc + (1 − α)Kv. The choice
of α = 1 gives back the original TRSK scheme, and a standard
choice of α = 0.75 is suggested to be stable, as it minimizes
the cancellation error in the advection decomposition on the
plane. The experiments shown so far all adopted this standard
parameter of α = 0.75. Now we investigate the influence of this
parameter choice with respect to the growth rates of the most
unstable modes. Figure 5(a) shows how the e-folding times vary
with α for four choices of equivalent depths. For a depth of
1 m, we notice that the choice of parameter of α = 0.75 seems
to give faster growth rates (smaller e-folding times) than the
original scheme (as already observed before), but the figure also
points out that it is possible to choose the parameter in a range
that reduces the growth rates (α near 0.9–0.95). For a smaller
depth, of 0.01 m, the scheme using α = 0.75 indeed gives smaller
growth rates, but the optimal parameter in this case would be
close to α = 0.625, which is in fact what is adopted in the Model
for Prediction Across Scales (MPAS; Skamarock et al., 2012).
Experiments with even smaller depths seems to indicate that
the choice of α = 0.625 is optimal for very small equivalent
depths.

Peixoto (2016) noticed that the gradient of the kinetic energy
discretization used in the TRSK scheme was very inaccurate
on unstructured spherical grids; in fact, it was proven to be
inconsistent (0th order accurate), a problem also shared with
the discretization of other terms of the TRSK scheme. Peixoto
(2016) suggests modifications of the TRSK scheme to ensure
at least overall first-order accuracy, at the cost of losing some
mimetic properties. More accurate kinetic energy and vorticity
discretizations could, in theory, reduce the mis-cancellation gap
that occurs in the advective term. The cancellation in this case
would be ensured asymptotically for sufficiently smooth fields.
Nevertheless, stability issues are usually related to near-grid-scale
features, so asymptotic cancellation might not be enough to avoid
the instability. We investigated the stability of the consistent
scheme proposed in Peixoto (2016), which we hereafter refer to
as PXT. The test case using 1 m depth shows that the scheme
blows up shortly before 3 days (Figure 6(a) for the pattern of
the error in the depth field at 2.8 days). The growth rate is in
fact somewhat larger than that of the original TRSK scheme, as
illustrated by the smaller e-folding times in Figure 3 with label
PXT.

5.1.3. Analysis of non-depth-weighted versions of TRSK

So far, all analysis done for the TRSK-based schemes has
considered the depth-weighted form of the vorticity term, as
in the original shallow-water formulation, and appropriate for
a three-dimensional layer-based coordinate model. It is possible
to remove the depth weighting of the vorticity, corresponding
to a three-dimensional level-based coordinate, although some
mimetic properties will be lost.

We analysed the non-depth-weighted version of TRSK and
found it to be unstable. The error pattern of the depth field
observed a few steps before blow-up assuming a mean depth of
1 m is shown in Figure 7. The calculated growth rate indicates an
e-folding time of 1.85 days, which is smaller than the e-folding
time of the layer version of TRSK (which has an e-folding time
of approximately 6.5 days), so the instability grows faster in the
non-depth-weighted version for this mean depth.

The GASS scheme can also be used without depth weighting
of the vorticity term. In fact, the method as derived in Gassmann
(2013) considered only the relative vorticity, not the potential
vorticity. Also, in three-dimensional models such as MPAS
(Skamarock et al., 2012), the vorticity is weighted by density
rather than the fluid layer depth, and the behaviour is best
captured by the non-depth-weighted shallow-water case. The
non-depth-weighted version of the GASS scheme, using the
original scheme parameter choice of 0.75, is still unstable, with
e-folding times shown in Figure 5(b) and error paterns shown
in Figure 8. With a mean fluid depth of 1 m, the e-folding time
of the instability is approximately 5 days, so this time is larger
than the original TRSK scheme. For a smaller depth of 0.01 m,
we have an e-folding time of 1.6 days for TRSK and 3.2 days for

c© 2017 Crown Copyright. Quarterly Journal of the
Royal Meteorological Society c© 2017 Royal Meteorological Society

Q. J. R. Meteorol. Soc. (2017)



Numerical Instabilities of Spherical Shallow-Water Models

Depth deviation at 5.3 days(a) (b) Dominant eigenvector
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Figure 4. As Figure 2, but now for the GASS scheme with depth-weighted vorticity, and error at time 5.3 days.
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Figure 5. E-folding time (days) relative to different parameter choices (α) for the GASS scheme with (a, c) depth-weighted vorticity and (b, d) non-depth-weighted
vorticity with constant mean depths of (a, b) 1 m, and (c, d) 0.1 m, 0.01 m and 0.001 m.

GASS. Therefore the GASS scheme seems to be slowing down the
growth speed of the instability with respect to TRSK.

We show in Figure 5(b) how the parameter choice of the GASS
scheme affects the e-folding time of the most unstable mode. In all
our tests with the non-depth-weighted scheme, using the GASS
scheme with the original parameter choice of 0.75 was always
beneficial to reduce the growth speed of the instability. We also
note that the modification of the GASS scheme seems to be more
effective (larger e-folding times) for the non-depth-weighted
scheme than for the depth-weighted scheme when compared to
the original TRSK scheme (the TRSK scheme e-folding times can
be observed in Figure 5(b) looking at the parameter choice of 1).

As a result from the shallow-water equation analysis for both
depth-weighted and non-depth-weighted models, we conclude
that the modification proposed by Gassmann (2013) does not
seem to be enough to eliminate the instability. Nevertheless, it
can delay its interference in the model by reducing its growth rate.
The two 3D models for which the instability was recently reported
(Skamarock et al., 2012; Gassmann, 2013) showed results based on
a baroclinic wave test suggested by Jablonowski and Williamson
(2006). The tests show a clear unstable mode at day 8 or 9 of

integration for the original TRSK scheme. At day 9, Gassmann’s
scheme does not reveal traces of the unstable mode yet. From our
analysis, apparently the instability has not yet grown significantly,
due to the smaller growth rate, but it is prone to appear at
later times. Further investigations to see if indeed the instability
appears later in the baroclinic wave test case would be required
to confirm the extension of these results for 3D models, but this
is beyond the scope of this article.

5.2. Analysis of a finite-element mimetic scheme

Thuburn and Cotter (2015) proposed a finite-element numerical
scheme for the shallow-water equations on a rotating sphere.
It uses compound elements, which provide a generalization of
the lowest-order Raviart–Thomas finite elements to arbitrary
polygonal grids and give a finite-element analogue of the
C-grid placement of variables. The finite-element scheme is
closely related to the finite-volume scheme of Thuburn et al.
(2014), which in turn is derived from TRSK. It has the same
mimetic properties, and it uses the same semi-implicit time
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Depth deviation at 2.8 days(a) (b) Dominant eigenvector
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Figure 6. As Figure 2, but now for the PXT scheme with depth-weighted vorticity, and error at time 2.8 days.
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Figure 7. As Figure 2, but now for the non-depth-weighted TRSK scheme and error at time 3.24 days.

integration scheme and the same finite-volume advection scheme
for advection of mass and potential vorticity. As in the original
TRSK scheme, this finite-element scheme also adopts a depth-
weighted vorticity in order to obtain compatibility between the
linear shallow-water equation scheme and the discrete potential
vorticity equation. The finite-element scheme has greater accuracy
than TRSK, which comes at the price of inverting certain mass
matrices and related operators at each time step.
The discretizations are built starting from the vector-invariant
form of the equations, and so are susceptible to non-cancellation
effects of the momentum advection term decomposition. No
numerical instabilities were detected within the experiments
performed in the original article. Closely related numerical
methods are under consideration for the next generation three-
dimensional atmospheric dynamical core at the UK Met Office.
Therefore, insights about whether the Hollingsworth instabilities
will happen in this case are highly desirable.

We used our suggested test case of a very thin layer of shallow
water (with Coriolis force) to investigate potential instabilities.
Two grid possibilities were used: (i) a cubed-sphere grid, where
we used a resolution with 13 824 quadrilateral cells, and (ii) an
icosahedral based grid, formed by hexagons and 12 pentagons,
where we used a resolution with 10 242 Voronoi cells. The
icosahedral grid was modified with the approach suggested by

Heikes and Randall (1995), and has an orthogonal dual grid,
whereas the cubed-sphere grid used the same modification as
adopted in Thuburn et al. (2014), and is non-orthogonal. The
time step adopted was 400 s.

Our experiments showed that the model indeed reveals itself
to be unstable under small enough mean fluid depth. For a
mean depth of 1 m, the cubed-sphere model blows up shortly
after 5.17 days (Figure 9(a)). For this same depth, the hexagonal
grid did not blow up for runs of over 1 year, which shows that
it is potentially less susceptible to the instability. Nevertheless,
for a mean depth of 0.10 m, it blows up shortly after 5.95 days
(Figure 9(a)).

An attempt to use the power method to estimate the growth
rates was performed. We observed lack of convergence of the
algorithm in the experiments performed, even with very small
mean depths. The dominating vector seems to be strongly caught
by grid structures during the iterations, and does not seem to
reflect the actual dominant computational mode of the instability,
so these results are not shown.

5.3. Equivalent depths and the Rossby radius of deformation

In the experiments discussed above, reducing the mean depth
has the effect of reducing the Rossby radius of deformation
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Figure 8. As Figure 2, but now for the non-depth-weighted GASS scheme and error at time 8.1 days.
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Figure 9. Depth field deviation from the basic state (a) for a constant mean depth of η0 = 1 m for the FEM scheme on a cubed sphere at time 5.17 days, and (b) for a
constant mean depth of η0 = 0.1 m on an icosahedral grid at time 5.95 days.

λ = √
gη0/f . It is well-known that C-grid schemes can behave

poorly when the Rossby radius is not well resolved. For
example, taking η0 = 1 m, the Rossby radius at midlatitudes
is approximately λ = √

gη0/f ≈ 30 km, which is far from being
resolved on the grids used above with horizontal resolution of
approximately 240 km. It is therefore legitimate to ask whether
the poor resolution of the Rossby radius might be contributing
to the observed instability, and whether the instability might be
ameliorated by using much higher horizontal resolution typical
of that in modern weather and climate models.

For the non-depth-weighted EEN and AL schemes on a plane,
the analysis of BPT (their Figures 6 and 7) shows that the growth
rate (non-dimensionalized using f ) in fact increases as resolution
is refined, that is, for increasing grid Rossby number Ru keeping
Froude number Fu fixed. Consistent with this, Ducousso et al.
(2017) found that, in a version of the Nucleus for European
Modelling of the Ocean (NEMO) model using the EEN scheme,
the instability became significantly worse at finer horizontal
resolution.

To examine this issue in our experiments, the test cases for
depth-weighted TRSK without and with Coriolis force atη0 = 1 m
may be compared. In the case without Coriolis force, the Rossby
radius, based on the the midlatitude absolute vorticity rather
than f , is λ ≈ 360 km and so is marginally resolved. In the
case with Coriolis force, on the other hand, the Rossby radius
λ ≈ 30 km is badly under-resolved. The respective e-folding times
are 25.7 days and 6.5 days. Thus, the absolute growth rate of the
instability is greater for the case of badly under-resolved Rossby
radius. However, the background absolute vorticity is 13 times as
strong in the case with Coriolis force. Therefore, the growth rate
non-dimensionalized by the background absolute vorticity is in
fact greater for the case of marginally resolved Rossby radius.

We also repeated the test for depth-weighted TRSK, with
η0 = 1 m and including Coriolis force, on grids with 120 km,
60 km, and 30 km resolution. In all cases the model crashed after
about 14.5 days, similar to the original 240 km run. The linear
analysis indicates that the e-folding time at 240 km resolution
is about 6.5 days. Increasing the grid resolution to 120 km and
60 km results in e-folding times respectively of 7.4 and 9.5 days.
In this set of experiments the growth rate of the instability (both
absolute and non-dimensionalized) shows a modest decrease as
the resolution of the Rossby radius improves.

From this limited set of results it appears that the dependence
of the instability on resolution of the Rossby radius may be
quite complicated, and might be affected by the specific scheme
used, depth-weighting, spherical geometry, and whether the
background vorticity is provided by the flow or the planetary
rotation. Nevertheless, it is clear that increasing the horizontal
resolution does not, in general, suppress the instability, and may
make it worse. The results also imply that a relatively coarse
and computationally cheap horizontal resolution, as used in
most of our tests, is adequate for diagnosing the presence of an
instability.

6. Analysis of instabilities in ENDGame

The discretization of the atmosphere dynamical core of the
Unified Model of the UK MetOffice, also known as ENDGame
(Wood et al., 2014), is based on the shallow-water discretization
discussed in Zerroukat et al. (2009). In this section, we will
first perform a linear stability analysis of the Zerroukat et al.
(2009) scheme and two alternatives, under a similar approach as
adopted in BPT, for the planar version of the scheme. This shows
that depth weighting of the Coriolis term on its own can give
rise to instabilities, depending how it is applied. Then, we will
show numerical results for the spherical shallow-water model.
Implications for the stability of the three-dimensional ENDGame
will be discussed at the end.

6.1. Analysis on an f -plane

6.1.1. Original ENDGame scheme

Following the notation of BPT, consider the shallow-water
equations written in advective form for a planar domain
with velocity components (u, v), water height η and bottom
topography (bathymetry) b,

ut + uux + vuy − f0v = −g(ηx + bx),

vt + uvx + vvy + f0u = −g(ηy + by),

ηt + (uη)x + (vη)y = 0,

(8)

where the subscripts refer to partial derivatives, g is the gravity
constant, f0 is the Coriolis parameter (constant) and the free
surface height is given by η + b.

The scheme proposed in Zerroukat et al. (2009) adopts a
semi-implicit semi-Lagrangian approach, but we are interested in
the instabilities that arise due to spatial discretizations related to
geostrophic and inertia-gravity linear modes, so we will adopt a
simplified advection scheme. The scheme is constructed on a usual
horizontal C-staggered grid. The semi-discrete version of these
equations for a planar domain of constant Coriolis parameter can
then be written as

ut +uδxux+vxδyu
y− f

η
ηyv

y
x

= −g(δxη + δxb),

vt +uyδxv
x+vδyvy+ f

η
ηxu

x
y

= −g(δyη + δyb),

ηt + δx(uηx) + δy(vηy) = 0,

(9)

where the over-lines indicate a centred averaging in the direction
of the superscript and the δs indicate a centred differencing in
the direction of the subscript (BPT give details on the notation).
The key point of this discretization is that it uses depth-weighted
Coriolis terms so that the Coriolis terms do not contribute to the
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Figure 10. The fastest growing instabilities (maximum |ωi|) for varying λ and κ for the ENDGame scheme for the case with v1 = 0 and (a) Ru = 10, Fu = 10 and (b)
Ru = 40, Fu = 40. [Colour figure can be viewed at wileyonlinelibrary.com].

energy budget and have good Rossby mode dispersion properties
(Thuburn and Staniforth, 2004).

The linearization will be taken with respect to a geostrophically
balanced non-resting steady state. To ensure the flow is balanced,
one could either think of adding a forcing to the equations, or
else, and as we will adopt, use the bottom topography b to enforce
the steady state. To do so, consider the constant basic velocity and
mean water depth (u1, v1, η0), and bottom topography defined as

b = b0 + f0

g
(v1x − u1y), (10)

with b0 constant. Clearly the bottom topography terms in the
right-hand side of the discrete equations reduce to f0v1 and −f0u1

for the u and v equations, respectively.
The linearized version of these equations may then be

written for the perturbations variables (u′ = u − u1, v′ = v − v1,
η′ = η − η0) as

u′
t +u1δxu′x+v1δyu′y−f0v′xy− f0v1

η0

(
η′yy−η′x

)
= −gδxη

′,

v′
t +u1δxv′x+v1δyv′y+f0u′xy+ f0u1

η0

(
η′xx−η′y

)
= −gδyη

′,

η′
t +η0(δxu′+δyv′)+u1δxη′x+v1δyη′y = 0,

(11)

where the over-lines with double superscript indicates averaging
in both directions indicated.

Assume that the perturbations are of a wave-like form,

(u′, v′, η′) = (̂u, v̂, η̂)exp

(
iκx

�x
+ iλy

�y
− iωf0t

)
, (12)

where ω is a non-dimensional frequency normalized using f0, and
κ and λ are non-dimensional horizontal wavenumbers for the x-
and y-directions normalized using the grid spacings �x and �y
respectively. Define the following convenient non-dimensional
quantities

Fu = u1

c
, Fv = v1

c
, Rc = 2c

f0�y
, X = �x

�y
, (13)

respectively as the Froude numbers for the basic flows u1 and
v1, Rc as twice the ratio of the Rossby radius (c/f0) and the grid
spacing �y, where

c = √
gη0. (14)

The grid-scale Rossby numbers Ru and Rv for the flows u1 and v1

can be constructed using the above parameters

Ru = 2u1

f0�x
= FuRc

X
, Rv = 2v1

f0�y
= FvRc. (15)

Substituting the wave-like form into the discrete linearized
equations (11), and using the above relations together with the
definitions,

cp = cos(p/2), sp = sin(p/2), p = κ , λ, (16)

one obtains a matrix form of the stability problem,

⎡
⎣ � −icκ cλ − Rcsκ

X − iEu

icκ cλ � −Rcsλ + iEv

− Rcsκ
X −Rcsλ �

⎤
⎦

⎡
⎣ û

v̂
cη̂
η0

⎤
⎦ = 0, (17)

where

� = ω − Rusκ cκ − Rvsλcλ,

Eu = Fvcκ(c2
λ − 1),

Ev = Fucλ(c2
κ − 1).

(18)

Although it is possible to derive analytical solutions for special
cases, such as those aligned with the grid (κ = 0), these do not
capture the most unstable modes, so direct numerical evaluations
of the eigenvalues (ω) of the stability matrices were performed. We
considered only the imaginary part of the eigenvalues, ωi, which
is the part that leads to the instability, and present their maximum
absolute values for a few parameter settings in Figures 10 and
11. These show that for a zonal flow (v1 = 0), there are unstable
modes that are stronger for larger horizontal wavenumbers (κ).
The maximum growth rate increases as equivalent depth decreases
(increasing Froude number) and also as horizontal resolution is
refined (increasing grid Rossby number). Figure 11(b) shows
that the most unstable modes are not necessarily aligned with
the grid.

Therefore, the planar version of the ENDGame formulation
of the shallow-water equations may suffer from grid-scale
instabilities. However, in comparison to BPT, their dispersion
relation is not the same as that for Hollingsworth instabilities; in
fact, as will be shown below, it is solely related to the discretization
of the Coriolis term.
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Figure 11. The fastest growing instabilities for all λ and κ for the ENDGame scheme for the case with v1 = 0 as a function of Fu and Ru; (a) the maximum
non-dimensional growth rates, |ωi|, and (b) their wavenumber (κ , λ); the arrows show their direction and the contours their magnitude.

6.1.2. Alternative simplified scheme

The instability detected in the previous section is directly related
to the form of discretization of the Coriolis term. This can be seen
by noting that if the terms Eu and Ev in (17) were set to zero then
the matrix of the system could be written as (� I + H), where
H is Hermitian; � would then be real-valued and the problem
is neutrally stable. The terms Eu and Ev arise from the the last
terms on the left-hand sides of the u′ and v′ equations in Eq. (11),
which in turn arise from the depth weighting of the Coriolis
term.

With this insight, it is simple to derive a stable discretization
for this problem. For example, using simple uniform averaging

fv ≈ f vxy, fu ≈ f uyx (19)

results in Eu = 0, Ev = 0, and the scheme is then stable for this
problem.

This is not a new scheme; in fact it is the standard kind
of discretization one would first apply in finite difference C-
grid models. It was frequently used in the early days of weather
forecasting (e.g. McDonald and Bates, 1989) and is still considered
in some models (e.g. Barros and Garcia, 2004). Nevertheless, this
approach lacks some important properties of the scheme adopted
in ENDGame. For example, in this scheme the Coriolis term
is not neutral in the energy budget when used in a layer-based
model. On an f -plane, Eq. (19) is obtained from Eq. (9) simply
by removing the depth weighting.

6.1.3. Alternative energy-conserving scheme

Alternatively, one can build a depth-weighted discretization that
still retains an energy conserving Coriolis term and is stable for
the planar analysis:

fv ≈ f

ηxy ηyv
x

y

, fu ≈ f

ηxy ηxu
y

x

. (20)

This is identical to the energy conserving scheme of Sadourny
(1975), with the exception that here only the planetary vorticity
(Coriolis parameter) is used instead of the absolute or relative
fluid vorticity, since the momentum equations are not in vector-
invariant form. With this discretization, again it is possible to
show that Eu = 0 and Ev = 0, so the scheme is neutrally stable.

One intellectually satisfying aspect of this discretization is
that f is evaluated at vorticity points, which feels more natural

and is closer to the approach of Arakawa and Lamb (1981)
than the original scheme, which evaluates f at mass/pressure
points.

6.2. Analysis on the sphere

6.2.1. Description of the schemes

We have described three numerical schemes so far. First the
original ENDGame scheme, described in Eq. (9), which we
will denote as ‘ORIG’. Second, the simplified scheme, described
in Eq. (19), which we will denote as ‘SIMP’. And third, an
alternative energy-conserving scheme, analogous to Sadourny’s
energy-conserving scheme, described in Eq. (20), which will be
denoted as ‘ALTEC’.

On the sphere, considering variable Coriolis parameter
(f = 2	 sin φ) and the spherical metric terms, ORIG is written as

fv ≈ 1

cos φ

f

η
ηφ cos(φ)v

φ
λ

,

fu ≈ f

η
ηλu

λ
φ

,

(21)

where φ refers to latitude and λ to longitude coordinates on the
sphere.

This scheme ensures that the Coriolis term does not contribute
to the energy budget and also has steady geostrophic modes on
the f -sphere. Thuburn (2007) shows that it also has accurate
representation of Rossby waves (β-effect), as the Coriolis
parameter f is calculated at mass points. Unfortunately, the
previous section shows that it is numerically unstable on an
f -plane.

SIMP is calculated on the sphere as

fv ≈f vφ
λ

,

fu ≈f uλ
φ

.

(22)

On the calculation of the energy budget, it is possible to show
that no exact cancellation is expected, and therefore the Coriolis
term might undesirably contribute to the energy budget. Based
on Thuburn (2007), it is possible to show that it also has steady
geostrophic modes and accurate representation of Rossby waves.
Also, it is numerically stable on an f -plane.
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(a) ENDGAME-ORIG Height deviation at 14.5 days
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Figure 12. (a) Height field deviation from the basic state with constant mean height of 1 m for the original ENDGame scheme at time 14.5 days. (b) Dominant
eigenvector for height field deviation from the basic state with constant mean height of 1 m.

(a) ENDGAME-ALTEC Height deviation at 60 days
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Figure 13. (a) Height field deviation from the basic state with constant mean height of 1 m for the alternative ENDGame scheme (ALTEC) at time 60 days. (b)
Dominant eigenvector for height field deviation from basic state with constant mean height of 1 m.

ALTEC considers the Coriolis parameter calculated at vorticity
points, and may be written on the sphere as

fv ≈ 1

cos φ

f

ηφλ
ηφ cos(φ)v

λ
φ

,

fu ≈ f

ηφλ
ηλu

φ
λ

.

(23)

Again this matches the energy-conserving scheme of Sadourny
(1975). It is energy-conserving and has steady geostrophic modes
but, due to the position of the calculation of the Coriolis parameter
at vorticity points, the β-effect may not be as accurate as ORIG.

6.2.2. Numerical experiments

The numerical experiments will be based on the zonal flow test
case with Coriolis force, as described in section 4. The experiments
will be performed with the original configurations of the shallow-
water ENDGame scheme, with semi-Lagrangian semi-implicit
discretization with 256 × 128 grid points and time-step size of
1200 s.

A simulation run with this configuration assuming η0 = 1m
reveals that ORIG is unstable. Figure 12(a) shows the error in the
height field at 14.5 days, a few time steps before the model blew
up (the figure shows the step where the model attained maximum
error in the velocity greater than 10 m s−1). The spherical linear
analysis shows that the dominant eigenvector has larger values
concentrated over midlatitudes (Figure 12(b)), as happens with
the error pattern observed a few time steps before blow-up.

The e-folding times of the instability for different mean fluid
depths (η0) are shown in Figure 14. For depths larger than 4 m
the linear analysis method did not converge, indicating that either
the model is stable, or that the methodology is not sufficiently
accurate to capture the instability. Indeed, for such larger layer
depths we did not observe instability within reasonable run time
of the model (up to 1 year).

The most unstable mode lies around 60◦ latitude, where,
for a resolution of 256 × 128 in latitude–longitude coordinates,
f0 ≈ 7 × 10−5, �x ≈ 78 km and �y ≈ 156 km, so the ratio of

0 1 2 3 4 5 6

1

0.1

10

100

ENDGAME-orig

ENDGAME-altec

Depth (m)

Figure 14. E-folding time (days) relative to different mean fluid depths (m) for
the ORIG and ALTEC versions of the ENDGame model.

grid spacings is X ≈ 0.5. Also, the velocity field is zonal with
speed approximately 19 m s−1 at this latitude. Therefore, we may
estimate the local planar Froude number Fu ≈ 6 and the Rossby
number Ru ≈ 7. The linear analysis on the plane provides an
estimate for these parameters of a maximum growth rate of
approximately ωf0 ≈ 6.5 × 10−5 s−1, which gives an e-folding
time of about 4 h. This is pessimistic compared to our numerical
estimates of e-folding time, which, for this scenario on the
sphere, are of about 1 day (Figure 14), but not so different given
the great deal of approximation. Also, this scheme has implicit
diffusion within the semi-Lagrangian advection, which might be
responsible for the slower growth of the instability.

The simple averaging scheme for the Coriolis term (SIMP) was
found to be stable in all experiments performed, as predicted by
the planar linear analysis. The error of the scheme remains small
throughout the experiment for long periods of time.

The alternative energy conserving scheme (ALTEC) was shown
to be stable on the f -plane. Nevertheless, on the sphere, the
variable velocity and combination of averagings involving the
depth variable and cos(φ) factors in the Coriolis term breaks
the exact cancellation observed on the plane. A simulation run
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Table 1. Summary of results.

Equation Method Scheme Non-depth-weighted Depth-weighted Observations

Vector Invariant Finite differences EEN Unstable Stable Stability on the f -plane
(Energy-Enst Cons) AL Unstable Stable (Bell et al., 2017)

Finite volume (TRSK based) TRSK Unstable Unstable
GASS Unstable Unstable Slower growth wrt TRSK
PXT Unstable Unstable Faster growth wrt TRSK

Finite elements (Compound) CUBE – Unstable Faster growth wrt HEX
HEX – Unstable Slower growth wrt CUBE

Advective Finite differences (ENDGame) SIMP Stable - Not energy conserving
ORIG – Unstable Faster growth wrt to ALTEC

ALTEC – Unstable Stable on plane

Notation is defined in the text. The finite-element scheme was not investigated in non-depth-weighted form. For the ENDGame schemes, the simple Coriolis averaging
(SIMP) does not apply to a depth-weighted form, and ORIG and ALTEC were tested only in depth-weighted form.

assuming η0 = 1 m reveals that the alternative scheme is also
unstable on the sphere, but it takes much longer for the model
to crash. Figure 13(a) shows the error in the depth field at
60 days, only a few steps before blow-up. The unstable pattern
emerging before blowing up seems to be very close to the poles.
The dominant eigenvector (Figure 13(b)) of the most unstable
mode also shows that the problem is mainly closer to the poles.
A closer look at how the growth rates change with the mean
depth (Figure 14) reveals that indeed at 1 m height the e-folding
time of the alternative scheme is far (about four times) larger
than that of the original scheme, which is approximately the extra
time required for this model to blow up compared to the original
scheme. Figure 14 also shows that for larger depths (larger than
4 m), the original scheme is in fact more stable than the alternative.
A similar situation may happen if the depth is too small (smaller
than 0.1 m). So, except for the interval of [0.01, 4] mean depths,
the original scheme has growth rates smaller than the alternative
scheme.

6.3. Implications for 3D ENDGame

The three-dimensional operational ENDGame model (Wood
et al., 2014) used at the UK Met Office uses ORIG but in a height-
based vertical coordinate with density times model layer depth
as weights for the Coriolis term. In a height-based coordinate,
the model layer depths are fixed and the local variations in
density are relatively small. Therefore, as discussed in section 2.2,
the appropriate shallow-water model to analyse the stability of
3D ENDGame is one with non-depth-weighted Coriolis terms,
similar to Eq. (22) but with some cos φ weights. To date, no
traces of this instability have been detected in the operational
model, and indeed, the above analysis suggests the model should
be stable.

A version of 3D ENDGame with a Lagrangian vertical
coordinate has been developed by (Kavčič and Thuburn, 2017;
personal communication). Early versions of that model used a
depth-weighted Coriolis term, but were found to suffer from an
instability with short vertical and meridional scales that appeared
in regions of strong zonal wind. Removing the depth weighting
from the Coriolis term eliminated the instability. All of these
symptoms are consistent with the analysis above for the ORIG
scheme.

7. Discussion and concluding remarks

We have proposed the use of shallow-water models with very
small layer depth as a useful means of investigating certain modes
of instability of three-dimensional numerical models. We have
suggested a shallow-water test case that is simple to implement,
and also a straightforward variant of the power method to identify
the most unstable mode. In using this approach it is important

to identify which shallow-water scheme corresponds to a given
three-dimensional model since stability can depend crucially on
the details. This is especially true for depth weighting of vorticity
or Coriolis terms, whose effects can be either stabilizing or
destabilizing.

The results obtained for all models investigated here are
summarized in Table 1.

The finite-difference energy–enstrophy conserving schemes
(EEN and AL) were only investigated by BPT on the f -plane,
and empirical results (e.g. Lazić et al., 1986) seem to corroborate
that the schemes are unstable for level-based models with non-
depth-weighted vorticity terms. The planar analysis indicates
that these schemes are stable for depth-weighted vorticity terms,
and no evidence of instabilities in layer-based models exists
to these authors’ knowledge. Further investigations would be
required to confirm the stability properties of these schemes
for spherical shallow-water models with depth-weighted vorticity
terms, which may be done following the lines discussed in this
article.

A key point shown here, complementing BPT, is that the
Hollingsworth instability exists even without the presence of
Coriolis terms (Earth rotation). The Hollingsworth instability is
due to a lack of discrete cancellation of advection terms and seems
to exist only in the presence of some background vorticity. That
said, the Coriolis force can influence the Hollingsworth instability
by simply acting as a source of vorticity.

The finite-volume schemes investigated, based on the TRSK
scheme, all seem to be unstable, either with or without depth
weighting of vorticity terms. These analysis have direct impact,
for example, on models such as MPAS (Skamarock et al., 2012)
or DYNAMICO (Dubos et al., 2015), that use this scheme.
The modifications proposed by Gassmann (2013) seem to slow
down the growth rate of the instability, and is particularly
beneficial for non-depth-weighted (level-based) models that run
in configurations that imply very small equivalent depths (e.g. use
a Lorenz grid). For the scheme with the modifications proposed by
Peixoto (2016), we see that ensuring more accurate calculations
of the terms involved in the existence of the instability is not
a sufficient condition to improve the stability properties of the
scheme.

The finite-element scheme tested in this work shows strong
instabilities, particularly on the cubed-sphere grid, with slower
growth rates on the hexagonal grid. Further analysis on the
stability properties of these and other finite-element schemes are
currently under investigation and will be reported elsewhere.

An interesting point is how the different weighting of the
vorticity term influences the stability of models based on the
vector-invariant momentum equations. For a depth-weighted
scheme, the depth field appears in the vorticity term but does
not appear in the kinetic energy term. This suggests that the
non-cancellation would be more pronounced in this case when
compared to a non-depth-weighted formulation. Indeed, our
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results for TRSK-based schemes using very small equivalent
depths (< 1 m) show that the e-folding times of the depth-
weighted formulations are smaller than the non-depth-weighted
versions (Figure 5), indicating that the instability grows faster
in depth-weighted models. Intriguingly though, BTP shows that
for FD schemes on an f-plane the opposite happens: the depth-
weighted model is stable, whereas the non-depth-weighted is
not. The reason is that the stability of the depth-weighted
scheme shown in BTP is not directly connected to a perfect
cancellation, but related to the conservation of uniform potential
vorticity (Appendix F of BPT). Further analytical inspection of
the unstable modes on hexagons would be required to make
a detailed connection between the results of BTP for the EEN
scheme and the results shown in this article for TRSK.

The instability detected for the ENDGame scheme was
surprising at first, since it is not in principle related to the
Hollingsworth instability, as it does not use the vector-invariant
momentum equations. However, it shows that the suggested test
cases seem to be applicable in a more general sense. In this
case the suggested test case revealed an instability that had not
been anticipated, and led us subsequently to perform the analysis
presented in section 6.1.

As a final point, we note that the investigation of numerical
instabilities arising in shallow-water systems considering small
equivalent depths seems to be not only of theoretical interest,
but of practical importance. Non-idealized weather and ocean
models indeed possess vertical modes corresponding to very
small equivalent depths and may be subject to these instabilities.
The main purpose of this article was not to show solutions to
stability issues, but more to enlighten the investigation path with
tools and better understanding of such instabilities.
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Appendix

A. Linear analysis for the EEN scheme with no Coriolis force

In this appendix we follow the analysis of BPT to show that, with
a constant velocity basic state and null Coriolis force (f0 = 0), the
original EEN scheme is neutrally stable on a plane.

Using the same notation as in BPT, one may write the linearized
form of the shallow-water equations for the height coordinate
model, ignoring the Coriolis term, as (Eqs (61–62) of BPT)

∂u′

∂t
+gδxη

′+u1δxu′x+v1δyu′yμE +v1δx

(
v′y−v′yμE

)
= 0,

∂v′

∂t
+gδyη

′+u1δxv′xνE +v1δyv′y+u1δy

(
u′x−u′xνE

)
= 0,

∂η′

∂t
+u1δxη′x+v1δyη′y+η0

(
δxu′+δyv′) = 0,

(A1)

where the basic state has constant velocities (u1, v1) and constant
depth η0 and the system refers to the perturbed variables for
velocity and depth (primed variables).

Let us assume wave-like solutions as

(u′, v′, η′) = (̂u, v̂, η̂) exp

(
iκx

�x
+ iλy

�y
− iωt

)
, (A2)

where ω is the frequency and (κ , λ) are non-dimensional
horizontal wavenumbers for the x- and y-directions normalized
using the grid spacings �x and �y respectively. Substituting
the wave-like forms in the perturbation equations, and using
that, for a quantity ψ , the x- and y-averaging operators and the
differencing operators δx and δy give, respectively,

ψ
x = cκψ , ψ

y = cλψ , (A3)

δxψ = 2i

�x
sκψ , δyψ = 2i

�y
sλψ , (A4)

one obtains the linear system⎡
⎢⎣ω − E11 E12 − 2

�x csκ
E21 ω − E22 − 2

�y csλ
− 2

�x csκ − 2
�y csλ ω − E33

⎤
⎥⎦

⎡
⎣ û

v̂
cη̂
H

⎤
⎦ = 0, (A5)

where

E11 = 2u1

�x
sκ cκ + 2v1

�y
sλcλμE,

E22 = 2u1

�x
sκ cκνE + 2v1

�y
sλcλ,

E33 = 2u1

�x
sκ cκ + 2v1

�y
sλcλ,

E12 = 2v1

�x
sκ cλ(μE − 1),

E21 = 2u1

�y
sλcκ(νE − 1).

(A6)

As in BPT,

μE = 1

3
(1 + 2c2

κ), νE = 1

3
(1 + 2c2

λ), (A7)

and c, cκ , cλ, sκ and sλ are defined in Eqs (14) and (16).
It will be convenient to introduce

Tu ≡ 2u1

�x
cκ(1 − νE), Tv ≡ 2v1

�y
cλ(1 − μE). (A8)

Using these definitions with (A6) one sees that

E11 = E33 − Tvsλ, E22 = E33 − Tusκ , (A9)

and the matrix (A5) becomes⎡
⎢⎣� + Tvsλ Tv

sκ
X − 2

�x csκ
TuXsλ � + Tusκ − 2

�y csλ
− 2

�x csκ − 2
�y csλ �

⎤
⎥⎦

⎡
⎣ û

v̂
cη̂
H

⎤
⎦ = 0, (A10)

in which

� = ω − E33 = ω − 2u1

�x
sκ cκ − 2v1

�y
sλcλ (A11)

is the Doppler-shifted non-dimensional frequency of the
perturbation and X = �x/�y.

By direct calculation of the determinant DM of the matrix in
(A10), one finds that

DM = � 3 + P� 2 − Q2� − PQ2, (A12)

where

P = Tusκ + Tvsλ,

Q2 =
(

2sκ c

�x

)2

+
(

2sλc

�y

)2

.
(A13)

Substituting � = −P into (A12), one sees that it is a solution of
DM = 0. Hence it is easy to factorize (A12),

DM = (� + P)(� 2 − Q2). (A14)

The solutions of DM = 0, � = ±Q and � = −P, are real-valued,
so the system is neutrally stable.
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B. Linear analysis on the sphere

In this appendix we describe an algorithm to evaluate the
eigen-structure of the most unstable modes using a nonlinear
shallow-water code modified to apply a variation of the power
method to small perturbations.

Let x(k) be the vector of values representing the model state
at time step k and let G represent the action of the nonlinear
shallow-water model integration scheme over one time step, so
that the unmodified shallow-water model obeys

x(k+1) = G(x(k)). (B1)

We are interested in the evolution of perturbations to some basic
state x̄, which should be steady. In practice, for a given numerical
method it may be difficult or impossible to find a state close to the
desired basic state that satisfies x̄ = G(x̄). Therefore a constant
forcing term F = x̄ − G(x̄) is introduced to compensate for the
numerical drift of the desired basic state; F is easily computed by
taking one model time step from the state x̄. The model governing
equation (Eq. (B1)) is then replaced by

x(k+1) = G(x(k)) + F. (B2)

Clearly x̄ is now a steady solution for the model (B2). Note that
F must be a constant forcing, not a relaxation back towards the
basic state; such a relaxation would damp perturbations and so
affect the diagnosed eigenmode growth rates.

Now consider the evolution of a small perturbation y(k) to the
basic state, so that x(k) = x̄ + y(k). Linearizing (B2) gives

y(k+1) = G′(x̄)y(k) + O(2), (B3)

where G′(x̄) is the Jacobian matrix of the model evolution operator
evaluated for the state x̄, and O(2) denotes higher- (second-)order
terms in y(k). It is the dominant eigenvalue and eigenvector of
G′ that we wish to determine. Provided y remains small, taking
repeated model time steps according to (B2) will cause y to evolve
according to (B3) with O(2) negligible, and y should evolve
towards the dominant eigenvector of G′, as in the power method.

However, with this method, it is likely that y fails to remain
small and so the linearization breaks down before the dominant
eigenvector emerges. Therefore, another modification is needed
to the model to rescale perturbations to ensure they remain small.
Thus we take a preliminary step forward using the model with
constant forcing

x∗ = G(x(k)) + F, (B4)

diagnose the perturbation

r(k+1) = x∗ − x̄, (B5)

then rescale the perturbation before computing the state at the
new time level

x(k+1) = αk+1r(k+1) + x̄. (B6)

Here αk+1 = ε/‖r(k+1)‖, for ε > 0 a small constant. Iterating
(B4)-(B6) should then determine the same eigenvector as the
power method applied to G′.

If the method converges, then the absolute value of the
dominant eigenvalue (λ) may be obtained using the converged
value of αk, which we will denote simply as α, as λ = 1/α.

Provided the basic state is fluid-dynamically stable, the shallow-
water equations should not have any growing modes. Then, for
a stable numerical scheme, it is expected that λ = 1 for any
parameter choice. The unstable modes are detected when λ > 1
(α < 1), and, in this case, the associated eigenvector will be given
by the converged vector y.

The growth rate (ν) may be then obtained observing that
λ = eν�t , where �t is the time step used in the calculation of G.
Consequently, the e-folding time may be also calculated directly
from ν.

In our experiments we adopted ε = 1 × 10−5 and the 2 norm
of the velocity field for calculation of αk. A small local perturbation
was added to the initial height field to trigger any unstable modes.
This approach can usually be easily incorporated in standard
shallow-water model codes.

Some important points must be made with respect to the
application of this scheme and the interpretation of its results.
First, we are assuming that the forcing F is small. For the basic
states used in this paper, which are all in analytical balance, F
represents the numerical error between the numerical adjustment
with respect to the analytical steady state, and therefore should
be limited to local truncation errors, and thus small. Second,
the eigenvalues might not necessarily be well separated, which
means that the eigenvector obtained might not always match the
dominant pattern appearing in a full model run. This lack of
matching might also happen due to nonlinear effects influencing
the full model run. Therefore, if the method converges, we have
as a result one of the possible dominant eigenmodes, which is
enough to show that the model is linearly unstable and will
provide estimates of the instability growth rate.
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