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HKRB. Secondly, a number of researchers such as Niÿckovi«c et al.
(2002), Thuburn (2008), Ringleret al.(2010), Skamarocket al.
(2012) and Gassmann (2013) are seeking to develop atmospheric
models using meshes with triangular, hexagonal or pentagonal
elements employing the vector-invariant momentum equations.
Gassmann (2013) discusses the Hollingsworth instability from a
historical perspective and concludes, in agreement with HKRB,
that the instability would be more pronounced the less stable
the stratiÞcation. She also proposes a method for choosing the
formulation of the kinetic energy on regular hexagonal grids, so
as to minimize the size of the term in the momentum equations
that leads to instabilities. Skamarocket al. (2012) show that
their scheme is prone to the Hollingsworth instability and use
Gassmann (2013)Õs formulation of the kinetic energy to suppress
it.

As noted above, HKRB provided a good initial theoretical
analysis of the instability, but their derivation of the dispersion
relationship for the instability included the neglect of a term,
which was only justiÞed by a rather ad hoc argument. Also,
some aspects of the occurrence of the instability have not been
clariÞed since the work of HKRB. Arakawaet al. (1992) argue
that the properties of isentropic coordinates Ôdo not allow room
forÕ the Hollingsworth instabilities. Arakawa (2000) notes that the
family of consistent energy- and enstrophy-conserving schemes
(including the een and AL schemes) that AL derived generally
behave well for the SWEs. He suggests that the Hollingsworth
instabilities arise in pressure or sigma coordinates Ôat least in
partÕ because of the formal application of the schemes in these
coordinates, in which the layer depthh is replaced by the thickness
of model layers despite the fact that the model levels are not
material surfaces. This has left developers of new dynamical cores
uncertain how to test their schemes using the SWEs. This is
very inconvenient for them and a better understanding of the
occurrence of instabilities in easily accessible variants of the SWEs
is highly desirable.

This article has two main aims. The Þrst is to conÞrm that
an idealized 3D basic state consisting of a uniform horizontal
ßow (independent ofx, y and z) in a stably stratiÞed ßuid on
an f -plane can suffer from Hollingsworth instabilities when the
original een and AL schemes are used to discretize the equations
of motion. Because the isopycnals in the basic state are ßat, these
linear instabilities can be analyzed using separable solutions that
are the product of vertically varying normal modes and solutions
to linearized SWEs. The resulting linearized SWEs also determine
the stability of an appropriately balanced layer of shallow water
moving with the same velocity (u1, v1) on anf -plane. This result
will allow the potential for Hollingsworth instabilities in 3D
problems to be explored with new numerical schemes, using
appropriately speciÞed 2D problems.

The second aim is to derive the matrices determining the
dispersion relationships for these linearized SWEs and to analyze
them in some detail. It is shown that the modiÞcations proposed
by HKRB and AL to the een and AL schemes remove spurious
off-diagonal terms (non-cancelling advection terms) from the
stability matrix and recover its Hermitian form. This makes the
schemes stable for any linear disturbance to the idealized basic
states. The original een and AL schemes in isopycnal coordinates
are also shown to be neutrally stable to all perturbations.
Numerical results and an expression for the instabilities in height
coordinates suggest that the most unstable perturbations are fairly
closely aligned with the grid.

It is more natural to consider the simple 3D basic state described
above in an oceanic context, where variations in the surface
height of the ocean can easily occur and affect the pressures at
all depths, than in an atmospheric context. For this reason, the
analysis is presented using the Boussinesq equations, which are
appropriate for the ocean (rather than the equations of state
for a perfect gas, appropriate for the atmosphere). The normal
modes of the continuous equations for an atmosphere on a
sphere are also separable (provided one makes use of traditional

assumptions such as the shallow-atmosphere approximation) and
the equivalent depth of the vertical modes is independent of their
frequency if the motions are taken to be hydrostatic (Daley, 1988).
These points also hold for the vertically discrete equations studied
by Thuburn and Woollings (2005). We would therefore expect
our analysis to be relevant to atmosphere models as well as ocean
models.

The linear stability analysis of the states described in this article
is most safely approached by writing out the full nonlinear
governing equations and the description of the basic state
in discretized form, then deriving from these the linearized
equations and Þnally the separable solutions. This approach
is unnecessarily lengthy and, with some care, it is possible to
linearize the equations and derive the separable solutions using the
continuous equations and then discretize. Section 2 presents the
full nonlinear governing equations and the linearized equations
for their separable solutions, Þrstly forz-coordinates and secondly
for isopycnal coordinates. The derivations of these equations are
given in Appendices B and C. The linearized equations for the
solutions that vary in time and in the horizontal are then derived
by linearizing two sets of SWEs. The only difference between the
two sets of SWEs is that the generalized Coriolis terms in the one
relating to isopycnal coordinates are the product of the potential
vorticity, q, and a depth-weighted velocityu� , whilst those for
height coordinates are the product of the vertical component of
the vorticity,Z, and the velocityu. It transpires that this difference
is of crucial importance.

Section 3 derives the vertical discretization of the modes in
isopycnal and height coordinates. The vertical modes with the
highestverticalwavenumbershavesmall equivalentdepths,asone
would expect from the vertical modes for the continuous problem.
It is shown that on the Lorenz grid the smallest equivalent depths
reduce as the number of vertical levels (K) increases at a rate that
is a factor ofK2 faster than that of the continuous modes and that
this result is related to the presence of the computational mode
on the Lorenz grid. The resulting reduction in the phase speed of
the gravity waves (c) on the Lorenz grid for these modes increases
their Froude number (Fu) and exacerbates the Hollingsworth
instabilities.

Section 4 Þrst describes the discretization of the SWEs using the
een scheme and derives the discrete form of the linearized SWEs
for both height and isopycnal coordinates. It then reduces the
analysis of the stability of the scheme to an eigenvalue problem
involving 3× 3 matrices written in a non-dimensional form and
shows that, for the modiÞed form of the een scheme, the matrices
are Hermitian and hence the scheme is stable. Section 4 also shows
that all linear perturbations are neutrally stable for the original een
scheme in isopycnal coordinates. Appendix E shows that the same
conclusions hold for the AL scheme and Appendix F provides an
interpretation of the stability of the schemes in isopycnal coordi-
nates. Section 4 ends by illustrating the dependence on the Froude
and Rossby numbers of the instabilities with the aid of analytical
calculations for some special cases and numerical evaluations.

Section 5 illustrates the nature of the instabilities further using
integrations of the SWEs and proposes test cases with doubly
periodic Cartesian domains that could be used to test whether
new numerical schemes suffer from these instabilities. Section 6
provides a concluding summary and discussion and the tables in
Appendix A provide a summary of the symbols used in the main
body of the article.

2. Model formulation and separation of variables

The governing equations will be taken to be a form of the
hydrostatic, incompressible, adiabatic, Boussinesq equations
suitable for a liquid. They will be written in Cartesian coordinates
and the Coriolis parameterf will be taken to have a constant value
f0. The horizontal kinetic energy per unit mass will be denoted by

Ke =
1
2

(u2 + v2), (1)
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the vertical component of the relative and total vorticities will be
denoted by� andZ respectively, with

� =
� v
� x

Š
� u
� y

, Z = f0 + � , (2)

and� 00 will denote a constant density.

2.1. Formulation in height coordinates

2.1.1. Governing equations

In height coordinates, the Bernoulli function� is given by

� = p/� 00 + Ke, (3)

wherep is the pressure Þeld, which is in hydrostatic balance with
the density� and gravityg,

� p
� z

= Š � g. (4)

The horizontal momentum equations in vector-invariant form
are then

� u
� t

Š Zv + w
� u
� z

= Š
��
� x

+ AmDmu,

� v
� t

+ Zu + w
� v
� z

= Š
��
� y

+ AmDmv,
(5)

wherew is the vertical velocity,Am is a coefÞcient of viscosity and
Dm is a diffusive operator such as� 2

H or � 2/� z2. The viscosity
will be set to zero, except in this section and section 4.6, where
the stabilizing effect of viscous terms on perturbations with small
Froude numbers is discussed.

The density,� , will be taken to be conserved following the
motion,

D�
Dt

= 0,
D
Dt

=
�
� t

+ u
�
� x

+ v
�
� y

+ w
�
� z

, (6)

and the ßow will be assumed to be incompressible,

� u
� x

+
� v
� y

+
� w
� z

= 0. (7)

The domain will be taken to be unbounded inx and y and
to have a ßat boundary atz = Š H where the vertical velocity is
zero. Attention will be focused solely on the baroclinic modes,
for which, to a very good approximation, the upper boundary at
z = 0 also has zero normal velocity, so

w = 0, z = 0,ŠH. (8)

The barotropic mode satisÞes the shallow-water equations (to a
very good approximation) and is not considered further in this
section.

2.1.2. Separable solutions to the linearized equations

The evolution of very small amplitude perturbations can be
determined by linearizing the hydrostatic Boussinesq equations
about a basic state.

The assumed basic state consists of a stably stratiÞed density
Þeld� 0(z), which is in hydrostatic balance with the pressure Þeld
p0(z), and a horizontal velocity Þeld with componentsu = u1
andv = v1, which does not depend onx, y, z or t. This velocity
Þeld is in geostrophic balance with a pressure Þeldp1, which
is independent ofz, and the vertical velocityw0 is zero. The
non-zero velocity in the basic state and the nonlinearities in the
equations of motions give the potential for instabilities.

These linearized equations enjoy separable solutions. The
derivation is detailed in Appendix B, which is a straightforward
generalization of section 6.11 of Gill (1982). Denoting the small
amplitude perturbations by primed variables, functions varying
only in the horizontal and time by tildes and functions varying
only in the vertical by hats, the horizontal velocity and pressure
pertubations are expressed in the following forms:

u� = �u(x,y, t)
öp(z)
g� 00

, v� = �v(x,y, t)
öp(z)
g� 00

,

p� = �� (x, y, t)öp(z).
(9)

The solutions dependent only onx, y andt are determined by
the linearized horizontal momentum equations,

� �u
� t

Š f0�v Š �� v1 = Š
� ��
� x

+ AmDm �u,

� �v
� t

+ f0�u + �� u1 = Š
� ��
� y

+ AmDm�v,

(10)

where

�� (x, y, t) = g�� + u1�u + v1�v, (11)

and a continuity equation

� ��
� t

+ u1
� ��
� x

+ v1
� ��
� y

+ He

(
� �u
� x

+
� �v
� y

)
= 0, (12)

whereHe is the equivalent depth (a separation constant). This
system is the linearized form of a shallow-water system (see
below).

The vertical structure of the perturbed variables is given by

döp
dz

= Š gö� , (13)

He ö� = Š
d� 0

dz
öh, (14)

öp
g� 00

=
döh
dz

, (15)

where ö� (z) and öh(z) describe the vertical variation of the
perturbationÕs density and vertical velocity Þelds. The boundary
conditions are given by

öh = 0, z = 0,ŠH. (16)

2.2. Formulation in isopycnal coordinates

2.2.1. Governing equations

Following section 3.9.1 of Vallis (2006), we write the density and
pressure Þelds in the form

� = � 00 + �� , p = p0(z) + � p, (17)

dp0

dz
= Š g� 00. (18)

The buoyancy and an inverse measure of the stratiÞcation for this
system are then given by

b = Š
g��
� 00

, � =
� z
� b

. (19)

If the isopycnal coordinates were used in a layer model,� would
represent the thickness of the layers. The Montgomery potential
and Bernoulli function are given by

M =
� p
� 00

Š bz, � = M + Ke. (20)
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The horizontal momentum equations are then given by

� u
� t

Š qv� = Š
��
� x

,

� v
� t

+ qu� = Š
��
� y

,
(21)

where

q = Z/� (q), u� = � (u)u, v� = � (v)v. (22)

Here q is the potential vorticity,u� and v� are proportional to
the ßuxes within the layers (i.e. the velocities multiplied by the
thicknesses of the layers) and the superscripts (q), (u) and (v)
indicate the location at which� is calculated. They have been
included at this stage so that the discretized form of the linearized
equations can be inferred easily in section 4.1. As usual, the partial
derivatives in the momentum equations are evaluated withbheld
constant and the diapycnal velocities have been set to zero.

The hydrostatic equation then takes the form

� M
� b

= Š z, (23)

and, for an ideal Boussinesq ßuid, the continuity equation is given
by

D�
Dt

=
��
� t

+ u
��
� x

+ v
��
� y

= Š �
(

� u
� x

+
� v
� y

)
, (24)

in which all partial derivatives are again evaluated withb held
constant.

Denoting the buoyancy at z = 0 and z = Š H by
b(z = 0) = b(0) and b(z = Š H) = b(ŠH), respectively, the
boundary conditions of no normal ßow are given by

Dz
Dt

= 0, b = b(0),b(ŠH). (25)

2.2.2. Separable solutions to the linearized equations

Assumingananalogousbasicstate to thatof theheightcoordinates
model, the separable solutions that depend only onx, y andt, in
a continuousmodel satisfy equations of the same form as those
for the height coordinate. However, in anumericalisopycnal
model, extra terms arise because the layer thicknesses (� ) in (22)
are calculated at different points. Appendix C shows that the
separable solutions depending onx, y andt satisfy the following
horizontal momentum equations:

� �u
� t

Š f0�v Š �� v1 Š
f0v1

He

(
�� (v) Š �� (q)

)
= Š

� ��
� x

,

� �v
� t

+ f0�u + �� u1 +
f0u1

He

(
�� (u) Š �� (q)

)
= Š

� ��
� y

.

(26)

In the horizontally discretized form of the Þrst part of equation
(26) the terms�� (v) and �� (q) orginate from different points. They
consequently represent different averages of� and their difference
is non-zero. The separable solutions also satisfy the continuity
equation (12), which is the same as that for the height coordinate
model.

Appendix C also shows that the vertical structure of the
separable solutions is given by

g
d öM
db

= Š öh, (27)

He
döh
db

= � 0 öM, (28)

where öh describes the vertical variation in the heightz� of the
perturbations to the isopycnals andHe is again the separation
constant. The boundary conditions are given by

öh = 0, b = b(0),b(ŠH). (29)

2.3. Formulation for shallow water

The shallow-water equations, for a layer of constant density in
which the bottom of the ßuid is at heightzb and the depth of the
ßuid layer is� , are given by

� u
� t

Š Zv = Š
��
� x

,

� v
� t

+ Zu = Š
��
� y

,

��
� t

+
�
� x

(� u) +
�
� y

(� v) = 0,

(30)

where the Bernoulli potential is given by

� = g(� + zb) + Ke. (31)

A steady basic state with a constant horizontal velocity Þeld
(u1,v1) and ßuid depth,He, which is independent of position, is
obtained provided the bathymetry,zb, is given by

gzb = gzb0 + f0(v1x Š u1y), (32)

whereb0 is a constant.
Writing u� = u Š u1 = �u, v� = v Š v1 = �v and� � = � Š He =

�� and linearizing (30) about this basic state, one obtains the
equations (10) and (12) derived for height coordinates.

If one deÞnes

q =
Z
�

, u� = � (u)u, v� = � (v)v, (33)

replacesZv byqv� andZu byqu� in (30) and linearizes about the
same basic state, one obtains the equations (26) and (12) derived
for isopycnal coordinates.

A second way to obtain a steady basic state with a ßuid depth
independent of position is to use a Þctitious force added to the
momentum equations. One of the numerical test cases in section 5
uses a Þctitious force and the other uses a sloping bathymetry to
balance the zonal ßow.

3. Analysis of the discrete vertical modes

3.1. Discretization in height coordinates

The natural discretization in the vertical of the level model is not
clear-cut and it is well known that there are a number of options;
see Tokioka (1978), Thuburn and Woollings (2005) and Girard
et al.(2014). Most ocean models use the Lorenz grid illustrated
in Figure 1(a), in whichu, v, p and� are stored on full levels and
w (and thereforeöh) is stored at half-levels. The vertical structure
equations (13)Ð(15) are then discretized as

öpk+ 1 Š öpk = Š
g
2

( ö� k+ 1 + ö� k) (	 z)k+ 1/ 2, (34)

He ö� k = Š
d� 0

dz
1
2

(
öhk+ 1/ 2 + öhkŠ1/ 2

)
, (35)

öpk(	 z)k = g� 00

(
öhk+ 1/ 2 Š öhkŠ1/ 2

)
, (36)

and the boundary conditions (16) as

öh1/ 2 = öhK+ 1/ 2 = 0. (37)
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Figure 1. The arrangement of variables using (a) height coordinates and (b)
isopycnal coordinates. In both grids,u andv are held at full levels and the upper
and lower boundaries are at half-levels.

3.2. Discretization in isopycnal coordinates

The natural discretization in the vertical of the isopycnal model is
to take the horizontal boundaries to lie at half levels and to store
u, v andM at full levels andz (and thereforeöh) at half levels, as
in Figure 1(b). Denoting the levels with a subscriptk, the level
number increasing with height, (27) and (28) are discretized as

g( öMk+ 1 Š öMk) = Š öhk+ 1/ 2(	 b)k+ 1/ 2, (38)

He(öhk+ 1/ 2 Š öhkŠ1/ 2) = � 0k öMk(	 b)k. (39)

For a grid withK levels, the boundary conditions (29) are simply

öh1/ 2 = öhK+ 1/ 2 = 0. (40)

One sees that (36) and (37) correspond to (39) and (40).
Equations (34) and (35), when combined, correspond to (38), but
in a form that involves more vertical averaging. The discretization
used above for the isopycnal model corresponds to that for the
best category in Thuburn and Woollings (2005), obtained using
a CharneyÐPhillips grid with potential temperature evaluated at
half-levels .

3.3. Discretized vertical modes

The impact of the vertical discretization on the equivalent depth,
He, which is the separation constant and the eigenvalue for the
normal modes in the vertical, can be illustrated for the case
of uniform stratiÞcation and grid spacing. Then the vertical
structure equations for height coordinates (34)Ð(36) reduce to a
single equation:

öhk+ 3/ 2 Š 2
 öhk+ 1/ 2 + öhkŠ1/ 2 = 0, (41)

with


 �
4 Š n2

4 + n2
,

n2 � Š
g

� 00

d� e

dz
	 z2

gHe
�

	 z	 b
gHe

.
(42)

Together with its boundary conditions, (41) deÞnes an eigenvalue
problem for 
 . These eigenvalues determinen2 and thenHe
through (42).

Similarly, (38) and (39) for isopycnal coordinates reduce to
(41) with


 � 1 Š m2/ 2, m2 =
� 0(	 b)2

gHe
=

	 z	 b
gHe

. (43)

The last identity above follows from the second part of (19).
The solutions of (41) are given by

öhk+ 1/ 2 = Re{CWk}, W = 
 ± i
√

1 Š 
 2. (44)

W lies on the unit circle whenŠ1 	 
 	 1 and hence can also
be written in the formW = exp i� , where� is a real argument.
The solutions written in this form that also satisfy the boundary
conditions, (40) for isopycnal coordinates or (37) for height
coordinates, are given by

öhk+ 1/ 2 = Csin(� k), � =
N�
K

, (45)

whereN is an integer and 1	 N 	 K.
The solution (45) withN = K hasöhk+ 1/ 2 = 0 for all integersk

within the domain, so its vertical velocities are zero. From (36), it
also hasöpk = 0 for all points in the domain and hence, by (9), zero
horizontal velocities. WhenHe = 0, (35) does not constrainö� and
(34) is satisÞed providedö� k = Š ö� k+ 1 at all points in the domain.
Hence (45) withN = K corresponds to the computational mode
on the Lorenz grid.

The solutions withN = K Š 1 are the ones with the smallest
equivalent depths that can give rise to Hollingsworth instabilities.
We now calculate their equivalent depths for the realistic case
with K 
 1. For these modes,

W � Š 1 +
i�
K

. (46)

Equating the second part of (44) and (46), one infers that

√
1 Š 
 2 �

�
K

. (47)

As 
 is close toŠ1, one can take 1Š 
 2 = (1 Š 
 )(1 + 
 ) �
2(1+ 
 ) and infer from (47) that


 � Š 1 +
� 2

2K2
. (48)

Using (42) and (43) in (48), one Þnds that, for height and
isopycnal coordinates respectively,

n2 �
16K2

� 2
and m2 = 2(1Š 
 ) � 4. (49)

From the second parts of equations (42) and (43), the equivalent
depth, He, is proportional to mŠ2 and also tonŠ2. For the
CharneyÐPhillips grid (and the continuous equations),He is
inversely proportional to the square of the vertical wave number.
If one choosesgso thatHe = 1000 m for the Þrst baroclinic mode
then, for the largest verticalwavenumberon theCharneyÐPhillips
grid, He = 1000 KŠ2 m. For a grid with 100 vertical levels, this
givesHe = 0.1 m for the most rapidly varying mode. For height
coordinates using the Lorenz grid, (49) shows thatHe for the
most rapidly varying mode is a factor of1

4� 2 KŠ2 smaller, which
means that it is 2.5 × 10Š4 m in the above example.

The solutions above are consistent with those derived by
Tokioka (1978). It is, however, clearer from the analysis above
than that of Tokioka (1978) that the solutions satisfying (47)
have the fastest vertical variation and smallest equivalent depths
of all the vertical modes that need to be considered on the
CharneyÐPhillips and Lorenz grids. Therefore, all the vertical
modes on the CharneyÐPhillips grid are well-behaved and
have equivalent depths of the same order of magnitude as the
continuous equations, whilst the modes with the most rapid
variation in the vertical on Lorenz grids have much smaller
equivalent depths because of their similarity to the computational
mode.
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Figure 2. The staggering of variables on the C-grid. This Þgure and the indexing
is based on Arakawa and Lamb (1981).

4. Analysis of the discretized SWEs

4.1. Formulation of een scheme

For simplicity, the equations will be written in Cartesian
coordinates and discretized on a C-grid with uniform, but not
necessarily isotropic, grid spacing. The arrangement of variables
on the C-grid is illustrated in Figure 2.

The following difference and average operators will be used.
Let 
 denote any of the coordinate directionsx, y andz, � denote
its discrete indexing and� denote any function of
 . Then

�


� �

1
2

(� �Š1/ 2 + � �+ 1/ 2), (	
 )� � 
 �+ 1/ 2 Š 
 �Š1/ 2,

(� 
 � )� �

(
� �+ 1/ 2 Š � �Š1/ 2

)
(	
 )�

, (� � � )� � (	
 )� (� 
 � )� .
(50)

The index for which the quantity is calculated is usually
suppressed. All of these operators commute with each other
and obey the associative laws of arithmetic. Adcroftet al.(1997)
provide a useful summary of identities they satisfy.

The discretization on a C-grid of� as deÞned by the Þrst part
of (2) is given by

� = � xv Š � yu, (51)

and the discretization of thex- andy-derivatives of the Bernoulli
function is given by� x� and� y� , respectively.

The averaging operators needed to deÞne the modiÞed een
scheme are given by

�
µ E �

1
3

� +
2
3

�
xx

, �
� E �

1
3

� +
2
3

�
yy

, (52)

where the ÔEÕ subscript indicates the expression is relevant to the
een scheme. Additional averaging operatorsµ F and � F, which
allow the original and modiÞed schemes to be concisely deÞned,
are given by

�
µ F � �

µ E, �
� F � �

� E (modiÞed scheme),

�
µ F � � , �

� F � � (original scheme).
(53)

For shallow-water and isopycnal coordinate models, the een
scheme calculates (22) using

� (q) = � xy, � (v) = � yµ F, � (u) = � x� F. (54)

As noted by HKRB, this averaging of the layers also needs to be
used in the discretization of the mass ßuxes in the continuity
equation,

��
� t

+ � x
(
� x� Fu

)
+ � y

(
� yµ Fv

)
= 0, (55)

to ensure conservation of total (kinetic plus potential) energy
with the modiÞed form of the kinetic energy,

2KE = u2x� F
+ v2yµ F

. (56)

The een scheme for the SWEs associated with height
coordinates discretizes the termsZv andZu of (30) using

(Zv)E =
2
3

(Z
x
v)

xy
+

2
3

(
Z

y
vxy

)
Š

1
3

(Zvx)
y
,

(Zu)E =
2
3

(Z
y
u)

xy
+

2
3

(
Z

x
uxy

)
Š

1
3

(Zuy)
x
.

(57)

Expressions for the SWEs associated with isopycnal coordinates
are obtained by replacingZ, u andv byq, u� andv� , respectively,
in (57). These expressions were noted in HKRB and are brießy
derived from the expression for the een scheme used by AL in
Appendix D.

4.2. Linearization of the een scheme

Using � x� 2 = 2�
x
� x� , one Þnds that the linearized kinetic

energy gradient in thex- andy-directions for (56) is given by

� xK�
E = u1� xu�x� F + v1� xv�yµ F,

� yK�
E = u1� yu�x� F + v1� yv�yµ F.

(58)

Introducing

� I =
{

0 for height coordinates,
1 for isopycnal coordinates,

}
(59)

in order to allow the expressions for height and isopycnal
coordinates to be combined, linearizing (57), one obtains

(Zv)�
E = f0v�xy

+ � �yµ Ev1 + � I
f0v1

H

(
� �µ F Š � �µ E

)xyy

,

(Zu)�
E = f0u�xy

+ � �x� Eu1 + � I
f0u1

H

(
� � � F Š � �� E

)xxy

.
(60)

Using (51) in (58) and (60), one sees that the discrete linearized
form of the momentum SWE (30) is given by

� u�

� t
Š f0v�xy

+ g� x� � + u1� xu�x� F + v1� yu�yµ E

+ v1� x

(
v�yµ F Š v�yµ E

)
Š � I

f0v1

H

(
� �µ F Š � �µ E

)xyy

= 0,

� v�

� t
+ f0u�xy

+ g� y� � + u1� xv�x� E + v1� yv�yµ F

+ u1� y

(
u�x� F Š u�x� E

)
+ � I

f0u1

H

(
� � � F Š � � � E

)xxy

= 0.

(61)

The Þrst line of each equation above consists of terms
corresponding to those present in the continuous equations.
The second line consists of additional terms arising from the
discretization employed, which have the potential to give rise to
spurious effects (the non-cancelling terms of HKRB). In HKRB,
the basic ßow was taken to be zonal,v1 = 0, and the terms
proportional to � I were not considered. The instability of the
original scheme was traced by HKRB to lack of cancellation
betweenu�x� F = u�x and u�x� E in the Þrst term on the second
line of they-component of the momentum equation. The kinetic
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energy in their modiÞed scheme was re-formulated as in (56) to
ensure that this term is identically zero (u�x� F = u�x� E).

Both terms on the second line of each of the equations in (61)
are zero for the modiÞed schemes in both height and isopycnal
coordinates.Thestabilityof themodiÞedschemesderivedbelow is
due in large part to this. For isopycnal coordinates, the additional
term proportional to � I is only zero when the mass ßuxes are
calculated using (54).

Linearizing (55), one also Þnds that

�� �

� t
+ u1� x� �x� F + v1� y� �yµ F + H

(
� xu� + � yv�) = 0, (62)

whereH is the unperturbed depth.

4.3. Stability matrices

The properties of the numerical schemes are best analyzed in
terms of non-dimensional parameters. So it will be assumed that
the perturbations are of a wave-like form:

(u�, v�, � �) = (uE,vE, � E)exp
(

i� x
	 x

+
i� y
	 y

Š i� f0t
)

, (63)

where� is a non-dimensional frequency normalized usingf0, and
� and� are non-dimensional horizontal wave numbers for thex-
andy-directions normalized using the grid spacings	 x and	 y,
respectively. As is usual in linearized stability calculations, physical
quantities are given by the real parts of the above expressions and
of those obtained below. DeÞning

cp = cos(p/ 2), sp = sin(p/ 2), p = � , � , (64)

for any quantity� which varies withx, y andt in the same way
as the quantities in (63), thex- andy-averaging operators give

�
x

= c� � , �
y

= c� , � (65)

and the differencing operators� x and� y give

� x� =
2i
	 x

s� � , � y� =
2i
	 y

s� �. (66)

It is also convenient to introduce the coefÞcients corresponding
to the averaging operators,

µ E =
1
3

(1 + 2c2
� ), � E =

1
3

(1 + 2c2
� ), (67)

and the associated modiÞed coefÞcients, which are given by

µ F = µ E, � F = � E (modiÞed scheme),

µ F = � F = 1 (original scheme).
(68)

One can deÞne the other non-dimensional quantities in a
number of different ways. A convenient approach is to deÞne
Froude numbers for the basic ßowsu1 andv1:

Fu =
u1

c
, Fv =

v1

c
, (69)

and to complete the set of non-dimensional parameters using

Rc =
2c

f0	 y
, X =

	 x
	 y

. (70)

Rc is twice the ratio of the Rossby radius (c/ f0) and the grid spacing
	 y (the factor of 2 has been introduced to simplify expressions
later) andX is the ratio of the grid spacings. In models using
latitude and longitude coordinates, the latter ratio is small near the
pole, so the range 0< X 	 1 is of interest. The grid-scale Rossby

numbersRu and Rv for the ßowsu1 and v1 can be constructed
using the above parameters:

Ru =
2u1

f0	 x
=

FuRc

X
, Rv =

2v1

f0	 y
= FvRc. (71)

We note that the factors of 2 in (71) result in values forRu and
Rv that are a factor of 2 larger than the values one would obtain
using the classical deÞnition of grid-scale Rossby numbers.

Substituting the above relations into the discrete linearized
equations (61) and (62), after some algebra (doing normalizations
usingf0, H, g and c), one obtains a matrix form of the stability
problem:

[
� Š E11 Šic� c� Š E12 Š Rcs�

X Š iE13
ic� c� Š E21 � Š E22 ŠRcs� + iE23

Š Rcs�
X ŠRcs� � Š E33

] [
uE
vE
c� E
H

]

= 0,

(72)

where

E11 = Rus� c� � F + Rvs� c� µ E,
E22 = Rus� c� � E + Rvs� c� µ F,
E33 = Rus� c� � F + Rvs� c� µ F,

E12 = RvXŠ1s� c� (µ F Š µ E),
E21 = RuXs� c� (� F Š � E),

E13 = � IFvc� c2
� (µ F Š µ E),

E23 = � IFuc2
� c� (� F Š � E).

(73)

In (72), the diagonal elementsE11, E22 and E33 represent
advection ofu�, v� and� �, respectively, by the basic ßow (u1,v1),
Šc� c� in the same element as iE12 represents the Coriolis term
Šf0v� in (B3) andc� c� in the same element as iE21 represents the
Coriolis term f0u� in (B4). Note that the off-diagonal elements
E12, E21, E13 and E23 are all equal to zero for the modiÞed een
scheme.

4.4. Stability of the modiÞed een scheme

For the modiÞed een scheme, becauseE12 = E21 = E13 = E23 =
0, the matrix equation (72) has the form

(� I + H)z = 0, (74)

whereI is the identity matrix andH is a Hermitian matrix, i.e.
a matrix with its transpose equal to its complex conjugate.
All eigenvalues of Hermitian matrices are real-valued and
hence the corresponding perturbations are neutrally stable. The
eigenvectors of Hermitian matrices are also orthogonal (or can be
chosen to be when two or more of the eigenvalues are identical).
Thegravity-waveandRossby-wavesolutionsof (72)havedifferent
phase speeds and hence different eigenvalues, so are automatically
orthogonal. In conclusion, linear perturbations of the form (63)
can be used to represent any initial conditions and the basic ßow
is neutrally stable to all linear perturbations.

4.5. Stability in isopycnal coordinates

Consider now the stability problem (72) for the original scheme
using isopycnal coordinates (� I = 1). It will be convenient to
introduce

Tu � Ruc� (1 Š � E), Tv � Rvc� (1 Š µ E). (75)

Using these deÞnitions with (73), one sees that

E11 = E33 Š Tvs� , E22 = E33 Š Tus� (76)
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and (72) becomes[
� + Tvs� Š ic� c� Š Tv

s�
X ŠRc

s�
X Š iI13

ic� c� Š TuXs� � + Tus� ŠRcs� + iI23
ŠRc

s�
X ŠRcs� �

] [
uE
vE
c� E
H

]

= 0,

(77)

in which

I13 � c� c� TvRŠ1
c , I23 � c� c� TuRŠ1

c , (78)

and

� = � Š E33 = � Š Rus� c� Š Rvs� c� , (79)

is the Doppler-shifted non-dimensional frequency of the
perturbation.

By direct calculation of the determinantDM of the matrix in
(77), one Þnds that

DM = � 3 + P� 2 Š Q2� Š PQ2, (80)

where

P = Tus� + Tvs� ,

Q2 = c2
� c2

� + R2
cs2� XŠ2 + R2

cs2� .
(81)

Substituting� = Š P into (80), one sees that it is a solution of
DM = 0. Hence it is easy to factorize (80),

DM = (� + P)(� 2 Š Q2). (82)

The solutions ofDM = 0 with � = ± Q are gravity waves and the
solutions with� = Š P are Rossby waves; both sets of solutions
are neutrally stable.

An interpretation of this result is presented in Appendix F.

4.6. Instabilities of the original schemes

There are, of course, general expressions for the solutions of
the cubic equations derived from setting the determinant of the
matrix in (72) to zero, but the resulting expressions for the
growth rates of the instabilities present in the original scheme are
complicated and do not aid understanding. The expressions for
instabilities aligned with the grid are much simpler than those for
the general case so, following HKRB, these are considered Þrst
in this section. The solutions obtained numerically motivated
the calculations for very small equivalent depths presented at the
end of the section. The solutions are only presented for the een
scheme, but entirely analogous arguments and solutions hold for
the AL scheme.

4.6.1. Instabilities aligned with the grid

We will consider instabilities that are aligned with the grid and,
without loss of generality, take� = 0 (rather than� = 0). Bothu1
andv1 will be allowed to be non-zero (which was not the case in
HKRB). � = 0 implies thats� = E12 = 0 andc� = µ E = 1. One
then Þnds thatE13 = 0 whether or not� I = 0 and

E11 = E22 = E33 = Rvs� c� . (83)

Consequently it is useful to introduce the Doppler-shifted non-
dimensional frequency

� = � Š Rvs� c� . (84)

Setting the determinant of the matrix in (72) for the original
een scheme to zero, one of the solutions is� = 0 and the other
solutions have

� 2 = a2 + i (1 Š � I) J, (85)

where

a2 � c2
� + R2

cs2� , J � FuRcs� c� (1 Š � E). (86)

Equations (85) and (86) are essentially the same as (6) in
HKRB and are clearly a version of the dispersion relation for
inertiaÐgravity waves. The Þnal term on the right-hand-side
of (85) is purely imaginary and destabilizes the inertiaÐgravity
waves. When� I = 1, this term is zero and the solutions for�
are all real. So the SWEs discretized usingq in the Zu and Zv
terms and isopycnal coordinate models should not suffer from
symmetric instabilities of the kind discovered by Hollingsworth
et al.(1983). This result is consistent with the comments made
in Arakawa (2000) that were noted in the Introduction and the
results of the previous subsection.

The dependence of the non-dimensional growth rate on
the non-dimensional parameters for height coordinate models
(� I = 0) can be found by writing� � � r + i� i in (85) and
eliminating� r:

2� 2
i = Š a2 +

√
a4 + J2. (87)

This solution to (72) has made no assumptions or approximations
other than� = 0.

The growth rate� i hence depends on the ratioJ/ a2. When
J � a2 or J 
 a2, � i is relatively insenstive toa and, to within
50%,

� 2
i � J/ 2, a2 	 | J|. (88)

This is the formula derived by HKRB for a slightly less general
case. For the case witha2 
 | J|, evaluating (87) using a Taylor
series, one Þnds that

� i �
|J|
2a

, a2 
 | J|. (89)

The equivalent depths and associated velocitiesc in the ocean
vary greatly. Barotropic modes in water of 4 km depth have
c � 200 m sŠ1, whilst the Þrst baroclinic mode hasc � 3 m sŠ1.
As discussed in section 3, when the number of vertical levels is
denoted byK, the highest vertical wave number mode in a model
using the CharneyÐPhillips grid hasc � 3 KŠ1 m sŠ1 and that in
one using the Lorenz grid hasc � 3

2� KŠ2 m sŠ1. In a model with
a 10 km grid in the midlatitudes,f 	 x � 1msŠ1. Hence, for the
high wave-number baroclinic modesa2 � c2

� and J � XRu and
whenX is of order 1 andRu is larger than or of order 1, the growth
rate, � i , is given by (88). For the barotropic modes,a � cs� / f0
and� i is given by (89).

For the baroclinic modes using (88), the second part of (86),
(64) and the second part of (67), one sees that the most unstable
perturbations have the largest values of

J =
2
3

FuRc sin3 �
2

cos
�
2

. (90)

DifferentiatingJ with respect to� , one Þnds (in agreement with
HKRB) that it is a maximum for the three grid-point wave with

� =
2�
3

, J =

�
3FuRc

2
�

2
. (91)

WhenFuRc = XRu 
 1, as is often the case with modern grids,
these modes can grow very rapidly. For example whenRu = 10,
Jmax � 6 and� i � 3. Withf0 = 10Š4 sŠ1, the perturbation would
increase by a factor of e� 2.7 in (f0� )Š1 s, which is about
3.3 × 103 s, i.e. just less than an hour.

For the barotropic modes

� i �
|J|
2a

= Fuc� (1 Š � E) =
2
3

Fu sin2 �
2

cos
�
2

. (92)

Differentiating, one Þnds that� i is a maximum when cos� =
3Š1/ 2. In the ocean,Fu is typically less than or of order 0.01 and
the maximum value of� i = 4Fu/ (9

�
3).
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Figure 3. Growth rates,� i , for the original een scheme using height coordinates for a ßow aligned with the grid (v1 = 0), X = 1 andRu = 10 as functions of (a)�
with � = 2�/ 3 and (b)� with � = 0.

4.6.2. Instabilities for very small Froude or Rossby numbers

Consider next the instabilities obtained in height coordinates
whenFu andFv are very small compared withRu andRv. For this
case,E13 � E23 � 0 and all theEij terms are proportional toRu or
Rv. AsFu andFv tend to zero, only the last element in the last row
and the last column of the stability matrices remain non-zero.
The instabilities are therefore determined by the determinant of
the upper-left 2× 2 submatrix.

In practice, the growth rates of the instabilities are likely to be
reduced by dissipative ßuxes. Vertical diffusion of momentum is a
parametrizationofan importantphysicalprocess inoceanmodels,
which usually has large coefÞcients within the surface boundary
layer and is a sufÞciently fast process to need to be calculated
implicitly. As the speciÞcation of the viscous coefÞcients varies
considerably from one numerical model to another, in the analysis
below it is speciÞed simply as being proportional toAm, that is we
setAmDmu = Š Amu, leaving the dependence on the vertical (and
horizontal) wave numbers of the disturbance for the reader to
specify. These viscous dissipation terms only make contributions
to the diagonal elements in the upper two rows of the stability
matrix. The revised diagonal elements,E�

11 andE�
22, are given by

E�
11 = E11 Š iAmf Š1

0 , E�
22 = E22 Š iAmf Š1

0 . (93)

Because the determinant in (72) reduces to just the upper left
2 × 2 submatrix multiplied byE33 Š � , the solutions consist of
the Doppler-shifted ÔgeostrophicÕ mode with� = E33 and two
other solutions, which satisfy

� =
E�

11 + E�
22

2
± S1/ 2, (94)

S�
(

E�
11 Š E�

22

2

)2

Š (ic� c� + E12) (ic� c� Š E21) . (95)

The Þrst term in (94) is a Doppler-shifted frequency with a
decay rate equal toAmf Š1

0 , which is what one might expect from
the viscous dissipation. EvaluatingS with � = 0, one sees that
s� = 0,µ E = 1 andE�

11 = E�
22 and hence that

S= Š ic� (ic� c� Š E21) = c2
� + i

2X
3

Rus3� c� . (96)

When the imaginary part ofSis non-zero, one of the two solutions
is unstable in the limit of small viscosity.

Evaluating� S/�� for any� with � = 0, one Þnds that

� S
��

= 0. (97)

This implies that�� i /� � = 0 for any� with � = 0. This shows
that the growth rates are stationary in the direction of� when the
perturbations are aligned with the grid. Taken with the numerical
results, it strongly suggests that the fastest growing perturbations
are aligned with the grid for the limit of small Froude
number.

An analysis of the instabilities when the Rossby number is
very small can also be carried out. Denoting the eigenvalue
solutions for Ru = Rv = 0 by � 0, the gravity-wave solutions
have

� 2
0 = c2

� c2
� + R2

c

(
s2� +

s2�
X2

)
, (98)

and the Rossby waves have� 0 = 0. Linearizing the determinant of
the matrix in (72) about these solutions and writing� = � 0 + � 1,
to Þrst order inRu andRv one Þnds that the gravity waves have

� 1i =
c� c�

2� 0
(E21 Š E12), (99)

and the Rossby waves have� 1i = 0.

4.7. Numerical evaluations of solutions of the stability matrices

Figure 3 presents numerical evaluations of the fastest growth
rates obtained from (72) for a basic ßow withv1 = 0, using height
coordinates (� I = 0) with Ru = 10 andX = 1, for a number of
values ofFu. The corresponding Þgure for the AL scheme is
similar, except that the non-dimensional maximum growth rate
is approximately 1.2 rather than 1. Figure 3(a) plots the non-
dimensional growth rates� i as a function of� with � = 2�/ 3
and Figure 3(b) plots� i as a function of� with � = 0. From
Figure 3(a), it is apparent that whenFu 
 1 the fastest growing
disturbances have� � 1. Figure 3(b) shows that the maximum
non-dimensional growth rate whenFu = Ru = 10 is close to 1.
These disturbances increase in magnitude by a factor of e� 2.7
in f Š1

0 s. At midlatitudes,f Š1
0 � 104 s, which is just less than 3 h.

From Figure 3, it is also clear that the growth rate at the chosen
value ofRu is strongly dependent on the Froude number (Fu),
being weak whenFu < 0.1 and strong whenFu > 5. High values
of the Froude number are obtained for the highest vertical modes,
particularly on the Lorenz grid.
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Figure 4. Growth rates,� i , for the original een scheme using height coordinates
for a ßow aligned with the grid (v1 = 0),X = 1,Ru = 10 andFu = 10 as functions
of � with � = 0. Solid line: (72). DashÐdotted line line: (88). Dashed line: (89).

Figure 4 provides a comparison of the solutions of (88) and
(89) with those of (72) calculated usingFu = Ru = 10 andX = 1.
The dashed lines are solutions of (89) with|J| < a2 and the
solid line is the solution of (72). Clearly the agreement is good.

The dash-dotted line in Figure 4 is the solution of (89). This
solution depends only onRu and is expected to hold only
when Fu is very large. Comparing Figures 3(b) and 4, one
sees that the approximation requiresFu to be very large to be
accurate.

Figure 5 illustrates the growth rates of the unstable solutions
of (72) for the original een scheme using height coordinates as
a function of� and � for four combinations ofRu andFu when
X = 1. The fastest growing solutions have growth rates similar to
the fastest growing solutions with� = 0 and their wave number
is quite closely aligned with the� -axis, particularly whenFu is
large.

Figure 6(a) shows the maximum values of� i obtained for
all � and � as a function ofFu, on the abscissa, andRu when
X = 1. The largest growth rates are obtained when bothFu
and Ru are large, values of� i as large as 2.2 being obtained
whenRu = Fu = 50. These perturbations take less than 90 min
to double in amplitude at midlatitudes. The corresponding
plot (not shown) of maximum growth rates for perturbations
restricted to those with� = 0 is barely distinguishable by eye from
Figure 6(a). Figure 6(b) shows the direction and magnitude of the
wave number (� , � ) of the fastest growing perturbations. These
perturbations have� � 0 and the wave number of maximum
growth rate� � 2.1 is consistent with the Þndings of HKRB and
(91). WhenX = 0.1 the fastest growing disturbances also have
� � 0 but the maximum growth rates are somewhat smaller (their
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Figure 5. The fastest growing instabilities (maximum|� i |) for varying� and � for the original een scheme in height coordinates for the case withv1 = 0 and four
combinations ofRu andFu. (a) Ru = Fu = 10. (b)Ru = 10,Fu = 40. (c)Ru = 40,Fu = 10. (d)Ru = 40,Fu = 40.
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Figure 6. The fastest growing instabilities for all� and� for the original een scheme in height coordinates for the case withv1 = 0 as a function ofFu (on the abscissa)
andRu: (a) the maximum growth rates� i and (b) their wave number (� , � ); the arrows show their direction and the contours their magnitude.
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Figure 7. The same as Figure 6, except that the results are for the AL scheme rather than the een scheme.

maximum being of order 0.9 for the range ofFu andRu plotted in
Figure 6(a)).

Figure 7 is the same as Figure 6, except that it shows the
maximum growth rates for the AL scheme rather than the
een scheme. The plot of maximum growth rate for symmetric
disturbances only corresponding to Figure 7(a) is again not
shown, because they are barely distinguishable.

Figure 8 is the same as Figure 5, except that it was obtained using
v1 = u1 instead ofv1 = 0. It is symmetric about the line� = � ,
as one would expect from the symmetries of the problem. More
interesting is that it shows that the most unstable perturbations
are aligned with the grid rather than the background ßow, the
alignment again being particularly strong whenFu 
 1. The
Þgures for this case, corresponding to Figure 6 for the een scheme
and Figure 7 for the AL scheme, are not shown because they are
barely distinguishable from those already presented, except that
whenu1 = v1 there are two maxima, the second being obtained
from the single maximum present forv1 = 0 by reßection in
� = � .

Numerical solutions of (72) strongly suggest that all linear
disturbances to a ßow in any direction are neutrally stable for the
original schemes in isopycnal coordinates. This result motivated
the analysis presented in section 4.5.

5. Numerical analyses of the SWE

To investigate the instability using the fully nonlinear shallow-
water equations, we implemented the een scheme (as described in
subsection 4.1) on a [0, 1]× [0, 1] doubly periodic plane with an
explicit fourth-order four-stage RungeÐKutta time-integration
scheme. The model was validated using initial conditions given
by u = sin(2� y), v = 0 andh chosen to balance withu. Second-
order accuracy in space and conservation of total energy and total
potential enstrophy within time truncation errors was achieved
on all four conÞgurations tested: original and modiÞed schemes,
with height and isopycnal coordinates.

One of the main outcomes of this study is that the developer
of a new numerical scheme should be able to test whether it will
suffer from Hollingsworth-type instabilities in a shallow-water
model context, rather than having to wait for a fully 3D version
of the scheme to be developed. The key point is to use uniformly
small equivalent depths, which slow down the gravity waves and
highlight nonlinear effects. A similar approach was discussed
by Gassmann (2011) in an investigation of the divergence of
computational modes on triangular grids. To help researchers
track the instability at the shallow-water development stage, we
propose two test cases.
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Figure 8. The same as Figure 5 except that instead ofv1 = 0,v1 = u1.

5.1. Instabilities on a constant zonal ßow

In this Þrst test case, we used a constant initial zonal ßow, a
ßat bottom (zb = 0 in (31)) and an additional forcing term
equal to f0u1 on the right-hand side of the second part of
(30) to produce a balanced steady-state solution (parameters
u1 = 50	 x, H = 2.5	 y2, f0 = 10,g = 10,	 x = 	 y = 1/ 64 and
time step	 t = 1/ 1024, which giveRu = 10 andFu = 10). To
trigger the instability, we added a small perturbation to� at
the central point of the domain (we used+ H/ 1000). The
modiÞed scheme in height coordinates and both schemes in
isopycnal coordinates did not reveal any instabilities in the
tests performed. However, the height-coordinate model with
the original een scheme suffers from instabilities with a dominant
non-dimensional wave number� of approximately 2�/ 3, which
grow in amplitude by a factor larger than 103 for every non-
dimensional time unit (see Figure 9). Taking the difference from
the initial state,E(t), to grow exponentially with time at a rate
given by� i f0 and Þtting a straight line through the right panel of
Figure 9, we obtain an approximate value for� i of 0.8, in very
good agreement with Figure 4(b).

5.2. Instabilities on a sinusoidally varying zonal ßow

In this second test case, we set the zonal velocityu(x,y) =
u1 sin(2� y) andh(x,y) = h0, where bothu1 andh0 are constants.
In order to create a steady-state solution, the bottom topography
(bathymetry) is set to

zb(x,y) =
u1f0
2� g

cos(2� y).

Since the prognostic variables are functions only ofy, the solution
is independent ofx and the shallow-water equations reduce
to a 1D problem. The only initial source of error is due to the
non-cancellation of the nonlinear terms in the evolution equation
for v. For appropriate choices of parameters, the instability afßicts
the height coordinate model with the original een scheme, as
expected. We show in Figure 10 an example (parametersu1 = 10,
H = 0.1,f0 = 1/	 x,g = 10,	 x = 	 y = 1/ 64 and dt = 1/ 1024,
which givesRu = 20 andFu = 10) of the spectrum a few time
steps before the model blows up and also the evolution with
time of the maximum error in the layer thickness (� ) (i.e.
the maximum difference from its original value). The initial
condition is dominated by a low wave number pattern (wave
number 2), but as time evolves, errors in higher wave numbers
appear and the instability is triggered. Once triggered, the growth
rates are very large. The estimated non-dimensional growth
rate for the parameters used in Figure 10 is� i � 2.0. This test
case has non-zero relative vorticity and growth rates that are
somewhat larger than those obtained using the formulae for a
constant ßow on anf -plane. Figure 11 provides a snapshot of
the model Þelds at a time when instability is emerging in theh
andv Þelds.

6. Concluding summary and discussion

The factors that determine the linear stability of constant ßows
on an f -plane to grid-scale disturbances have been clariÞed for
a number of discretizations of the vector-invariant momentum
equations which use regular rectangular grids in the horizontal.
The 3D stability problems obtained in height coordinates and
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topography, which keeps the zonal ßow in balance. (a) Spectrum of ay-slice of� , where the wave numbers were normalized to (0,� ). (b) Evolution of E� (t), the
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isopycnal coordinates have been conÞrmed to be soluble as a
linear combination of products of a vertical mode and a solution
of linearized shallow-water equations (SWEs), with the depth
H of the water determined by the eigenvalue of the vertical
mode. Two-dimensional SWEs that can be used to explore the
stability of new 3D dynamical cores written in height or isopycnal
coordinates have also been identiÞed.

The depthH of the SWE associated with the modes of the
highest vertical wave number obtained using the Lorenz grid
decreases more rapidly as the number of depth levels increases
than is the case for solutions obtained using the CharneyÐPhillips
grid, for reasons related to the occurrence of the computational
mode on the Lorenz grid.

The 3× 3 matrices that determine the linear stability of the een
(energy and enstrophy conserving) scheme (and the AL scheme),
both in their original and modiÞed forms and in height and
isopycnal coordinates, have been constructed. It has been shown
that these stability problems for all the modiÞed schemes can be
written as eigenvalue problems for Hermitian matrices and hence
that all the modiÞed schemes are neutrally stable. The instabilities
obtained for the original schemes in height coordinates grow
most rapidly when the Froude number and grid-scale Rossby

numbers are large and the instability is nearly aligned with
the grid.

Simple expressions for the growth rates have been obtained
for instabilities aligned with the grid and for instabilities when
the Froude number or Rossby number is very small. Our
numerical investigations of the original schemes for isopycnal
coordinates found that they do not suffer from Hollingsworth
instabilities, in agreement with Arakawa (2000). The determinant
of the stability matrix for this case has been shown to reduce
to a simple factorizable form that has real solutions and
an explanation of this result has been proposed in terms of
solutions of the linearized SWEs with uniform potential vorticity
(Appendix F).

As shown by HKRB (see the discussion following (85) and
(86)), the instabilities are inertiaÐgravity waves that have been
destabilized by the discretization of the generalized Coriolis terms.
Consequently, and consistent with the discussion in Appendix B
of Gassmann (2013), one would not expect quasi-geostrophic
models (which do not represent inertiaÐgravity waves) to
suffer from them. Gassmann (2013) notes that the instabilities
occur preferentially in regions of high vertical shear, where the
stratiÞcation is relatively weak and the phase speeds of the internal
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modes are consequently relatively slow. The Froude number will
be highest in these regions, so, provided the Rossby number is high
enough, the instabilities will grow more rapidly in these regions.

Our results show that basic states that have no horizontal
temperature gradients (and associated vertical shear in the
horizontal velocity) can suffer from the Hollingsworth instability
when discretized using the een or AL schemes and height
coordinates. High vertical shear and high horizontal velocity
tend to occur near to each other, so in practice it will be difÞcult
to distinguish whether an instability seen in a model is associated
with one rather than the other, especially when other factors
(stratiÞcation, vertical grid spacing) are also implicated. The
instabilities can be obtained in height coordinates if a CÐP vertical
grid is used with a large number of vertical levels, but will usually
grow faster on a Lorenz grid (with the same number of vertical
levels), because the equivalent depth of the most rapidly varying
modes is then much smaller and the Froude number much
larger. These instabilities do not occur for these simple states
discretized using isopycnal coordinates, but this does not rule
out the possibility that other instabilities owing their existence to
discretization issues rather thanphysical causesmayoccur inmore
complex ßows, for example on a� -plane or the sphere or, as found
by Arakawa and Moorthi (1988), on ßows with vertical shear.

The origin of the instabilities in height coordinates might be
attributed to a loss of some form of momentum conservation,
as suggested by HKRB, or to the loss of the invariance of

the momentum equations to uniform motion of the frame of
reference. As suggested (but not proved) by HKRB and AL,
by smoothing the kinetic energy in the Bernoulli potential
using a stencil similar to that used in the generalized Coriolis
terms, one can obtain a modiÞed scheme that is stable to all
disturbances. The instabilities for the original schemes grow
extremely rapidly when the Froude number and Rossby number
are very large, but sufÞcient cancellation of terms may be possible
using this approach on other (e.g. hexagonal) grids, as suggested
by Gassmann (2013).

It is hoped that the above results will help developers of
new dynamical schemes (e.g. on triangular, hexagonal and other
meshes) to test their schemes using appropriately conÞgured
SWEs and to devise modiÞed schemes that do not suffer from
Hollingsworth instabilities.
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Appendices

Appendix A: Notation

Tables A1ÐA3 summarize the notation used in the main body of
the article. The third column of the tables refers to the equations
where the symbols are Þrst introduced.

Table A1. Table of Greek symbols for primary variables.

Greek Ð Lower case
� � a difference operator (50)
� I Kronecker delta function (59)
� vertical component of the

relative vorticity
(2)

� height of the free surface (9)
� the grid index in any direction (50)
� , � wave numbers of perturbation

in x- andy- directions
(63)

µ coefÞcients from averaging inx (52)
� coefÞcients from averaging iny (52)

 a coordinate in any direction (50)
� Doppler-shifted non-

dimensional frequency
(79), (84)

� density (4)
� inverse of stratiÞcation in isopy-

cnal model
(19)

� any function of
 (50)
� non-dimensional frequency of

perturbation
(63)

Greek Ð Upper case

	 the difference between neigh-
bouring grid points

(50)


 a non-dimensional parameter
for vertical modes

(41)

� the Bernoulli function (3)

Appendix B: Separation of variables in height model

B1. Basic state and perturbed equations

Assuming the basic state of a stably stratiÞed density Þeld� 0(z)
as described in section 2.1.2, we have that

dp0

dz
= Š � 0g, (B1)

and

p1 = f � 00(v1x Š u1y). (B2)

Denoting the perturbations by primed quantities and
neglecting products of perturbations, the horizontal momentum
equations for the perturbations are given by

� u�

� t
Š f0v� Š � �v1 = Š

�� �

� x
+ AmDmu�, (B3)

� v�

� t
+ f0u� + � �u1 = Š

�� �

� y
+ AmDmv�, (B4)

where

� � =
� v�

� x
Š

� u�

� y
, � � =

p�

� 00
+ (u1u� + v1v�). (B5)

Table A2. Table of Roman symbols for primary variables.

Roman Ð Lower case

a a parameter (86)
b buoyancy (19)
c speedc2 = gH
c� , c� cosines of wave numbers (64)
f the Coriolis parameter (2)
g gravity (4)
h function of z related tow or z (14), (B10)
m,n constants related to equivalent depths (42), (43)
p pressure (3)
q potential vorticity (22)
s� , s� sines of wave numbers (64)
t time (5)
u,v,w velocity components (5)
x,y horizontal coordinates (2)
z height coordinate (4)

Roman Ð Upper case

Am coefÞcient of viscosity (5)
DM determinant (80)
D total derivative (as in D/ Dt) (6)
Dm diffusive operator (5)
Eij matrix element for een scheme (73)
Fu,Fv Froude numbers (69)
H the total depth (or equivalent depth) (12)
H a Hermitian matrix (74)
I the identity matrix (74)
J a non-dimensional quantity (86)
Ke horizontal kinetic energy (1)
K the number of vertical levels (37)
M Montgomery potential (20)
N Š 1 the number of zeros in the vertical (45)
P,Q coefÞcients (81)
Rc twice the ratio of the Rossby radius and

grid spacing
(70)

Ru, Rv Rossby numbers (71)
S a non-dimensional quantity (96)
Tu, Tv modiÞed Rossby numbers (75)
X grid aspect ratio (70)
W a constant in normal mode solution (44)
Z vertical component of the total vorticity (2)

Hydrostatic balance for the perturbations is

� p�

� z
= Š � �g, (B6)

the incompressibility condition is

� u�

� x
+

� v�

� y
+

� w�

� z
= 0, (B7)

and the density perturbations satisfy

�� �

� t
+ u1

�� �

� x
+ v1

�� �

� y
+ w� d� e

dz
= 0, (B8)

because the heating by dissipation is zero in (B8) when the basic
state has no shear. Finally, the boundary conditions are

w� = 0, z = 0,ŠH0. (B9)

In summary, the above set has Þve unknownsu�, v�, w�, � �

and p� that are constrained by Þve equations and the boundary
conditions (B9).
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Table A3. Table of subscripts and superscripts.

Subscripts

b the (height of the) bottom (31)
e equivalent (as inHe) (12)
i imaginary part (87)
i, j x- andy coordinate indices (50)
k the vertical index (34)
x,y horizontal coordinates (50), (51)
E een scheme (52)
F modiÞed een scheme (53)
I isopycnal (59)
M matrix (80)
00 constant density (3)
0 the stably stratiÞed component of the

basic state
(B1)

1 the constant velocity component of the
basic state

(B2)

Superscripts

µ averaging inx (52)
� averaging iny (52)
� a perturbation (9), (B3)
� transports through faces of cells (22), (33)
ö� a function of the vertical coordinate (9)
�� a function ofx, y andt (9)
� an average of�

B2. Separable solutions

Comparing the Þve equations just summarized with those in
section 6.11 of Gill (1982), one sees that they enjoy separable
solutions of the same form. Departing slightly from the order
of GillÕs derivation, we assume that the variations inu�, v� and
p� are given by (9). Theng� 00� � = öp(z) �� (x, y, t), where �� is
given by (11) and the horizontal momentum equations reduce
to (10).

Following Gill, we let

� � = ö� (z) �� , w� = öh(z) �w(x,y, t). (B10)

Substituting the third part of (9) and Þrst part of (B10) into (B6),
we obtain (13). Substituting (B10) into (B8) and introducing the
separation constantHe, we obtain (14) and

He �w =
� ��
� t

+ u1
� ��
� y

+ v1
� ��
� y

. (B11)

Substituting (9) and the second part of (B10) into (B7), we can
choose to set (15) and obtain(

� �u
� x

+
� �v
� y

)
+ �w = 0. (B12)

Eliminating �w from (B12) using (B11), we obtain (12).
Hence the solutions dependent onx, y and t are governed by

the shallow-water equations (10) and (12). The vertical structure
functions öh(z), ö� (z) and öp(z) are determined by (13), (14) and
(15) and the boundary conditions (16) obtained from (B9) and
(B10).

Appendix C: Separation of variables in isopycnal model

C1. Basic state and perturbed equations

The assumed basic state is the same as that in the previous section.
Here, we just adjust the notation. So the stably stratiÞed state is
expressed as a proÞlez0(b) that is in hydrostatic balance:

dM0

db
= Š z0. (C1)

The horizontal velocity Þeld (u1,v1) is again in geostrophic
balance with a pressure Þeldp1, so

M = M0(b) + M1, M1 = f (v1x Š u1y). (C2)

The relative vorticity is again zero and the total vorticity,Z0 = f0,
is independent of position.

The horizontal momentum equations for the perturbations are
given by

� u�

� t
Š f0v� Š � �v1 Š

f0v1

� 0

(
�

�(v) Š �
�(q)

)
= Š

�� �

� x
, (C3)

� v�

� t
+ f0u� + � �u1 +

f0u1

� 0

(
�

�(u) Š �
�(q)

)
= Š

�� �

� y
, (C4)

where� � is given by the Þrst part of (B5) and

� � = M� + (u1u� + v1v�). (C5)

From (23), hydrostatic balance for the perturbations is given by

� M�

� b
= Š z�. (C6)

Continuity of mass, (24), gives

�� �

� t
+ u1

�� �

� x
+ v1

�� �

� y
= Š � 0

(
� u�

� x
+

� v�

� y

)
, (C7)

and the boundary conditions, (25), become

� z�

� t
+ u1

� z�

� x
+ v1

� z�

� y
= 0, b = b(0),b(ŠH). (C8)

In summary, the above set has four unknowns,u�, v�, M� andz�,
that are constrained by four equations and the above boundary
conditions.

C2. Separable solutions

Let

u� = öM(b) �u(x,y, t), v� = öM(b)�v(x,y, t),

M� = öM(b)g�� (x, y, t).
(C9)

Then

� � = öM(b) �� (x, y, t), �� (x, y, t) = g�� + u1�u + v1�v (C10)

and the terms in (C3) and (C4) other than those involving� �

reduce to (26). These additional terms will be considered shortly.
Letting

z� = öh(b) �� (C11)

and substituting the third part of (C9) and (C11) into (C6) gives
(27). Also substituting (C9) and (C11) into (C7) and introducing
the separation constantHe, one obtains (12) and (28).

The vertical structure of the additional terms in the horizontal
momentum equations can now be considered. Using (19) and
(28), one sees that their vertical structure is given by

� �

� 0
=

��
� 0

döh
db

=
�� öM
He

. (C12)

Hence these additional terms have the same vertical structure as
the other terms in the momentum equations and (C3) and (C4)
reduce to (26).

Finally, the boundary conditions obtained from (C8) and (C11)
reduce to (29).
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Appendix D: The een scheme horizontal discretization

The een scheme calculatesqv� at the centralu point in Figure
D1, located at (i, j + 1/ 2), as the sum of products of quantities
calculated at the surroundingv points (A, B, C and D in the
Þgure):

(qv� )i,j+ 1/ 2 = � i,j+ 1/ 2v�
i+ 1/ 2,j+ 1 + � i,j+ 1/ 2v�

iŠ1/ 2,j+ 1

+ � i,j+ 1/ 2v�
i+ 1/ 2,j + � i,j+ 1/ 2v�

iŠ1/ 2,j .
(D1)

The coefÞcient at each of these velocity points is calculated (see
AL equation (4.21)) using values ofq at three nearbyq points:

� i,j+ 1/ 2 =
1
12

[qi+ 1,j+ 1 + qi,j+ 1 + qi,j ],

� i,j+ 1/ 2 =
1
12

[qiŠ1,j+ 1 + qi,j+ 1 + qi,j ],

� i,j+ 1/ 2 =
1
12

[qiŠ1,j + qi,j + qi,j+ 1],

� i,j+ 1/ 2 =
1
12

[qi+ 1,j + qi,j + qi,j+ 1] .

(D2)

At point A, the Þrst two of theseq points used to calculate� are
those on either side of point A (at points 1 and 2). The sum of
these two contributions at A is hence given byqxv� / 6 and the
sum of the corresponding Þrst two contributions at A, B, C and
D is given by

C1 =
2
3

(qxv� )
xy

. (D3)

The other contribution at point A is calculated using the value of
q at point 5 in Figure D1(a). Point 5 is on the opposite side of
theu point from point 2. The remaining contribution at point B
also involvesq at point 5. So the sum of these two contributions
is equal to 1/ 6 timesq at point 5 timesv� x at point 2. The Þnal
remaining contributions from points C and D are given by 1/ 6
timesq at point 2 timesv� x at point 5. Denoting the Ôgeometric
productÕ for any quantities� and� by

Gy(� , � )i,j+ 1/ 2 �
1
2

(
� i,j � i,j+ 1 + � i,j+ 1� i,j

)
, (D4)

Figure D1. A depiction of the variables used by the een scheme in the calculation
of qv� at theu point in the centre of the Þgure. The een scheme uses the values of
v� at points AÐD and the values ofq at points 1Ð6 at thisu point.

one then sees that the een scheme discretizesqv� by

(qv� )E =
2
3

(qxv� )
xy

+
1
3

Gy(q,v� x). (D5)

By direct calculation of terms, one can establish that

Gy(a,b)j+ 1/ 2 = 2ayb
y

Š ab
y
. (D6)

Substituting (D6) into (D5), one obtains the Þrst part of (57).
The een scheme calculatesqu� for the u point stored at

(i + 1/ 2,j) using

(qu� )i+ 1/ 2,j = � i+ 1,j+ 1/ 2u�
i+ 1,j+ 1/ 2 + � i,j+ 1/ 2u�

i,j+ 1/ 2

+ � i,jŠ1/ 2u�
i,jŠ1/ 2 + � i+ 1,jŠ1/ 2u�

i+ 1,jŠ1/ 2.
(D7)

A similar argument to that given above establishes the second
part of (57).

Appendix E: Stability analysis for the AL scheme

As for the een scheme, the original and modiÞed AL schemes can
be concisely written by deÞning the averaging operators

�
µ A � �

xx
, �

� A � �
yy

, (E1)

where the ÔAÕ subscript indicates that the expression is relevant to
the AL scheme, and the associated ÔmodiÞedÕ averaging operators

�
µ B � �

µ A, �
� B � �

� A for modiÞed scheme,

�
µ B � � , �

� B � � for original scheme.
(E2)

Similarly to (54), the AL scheme for isopycnal coordinate
models sets

� (q) = � xy, � (v) = � yµ B, � (u) = � x� B, (E3)

and discretizes the continuity equation as

��
� t

+ � x
(
� x� Bu

)
+ � y

(
� yµ Bv

)
= 0. (E4)

It then discretizes the termsqv� andqu� in (30) using

(qv� )A = (qxyv� y)
x

+
1
48

� i
[(

� i � jq
) (

� jv� )]
+ � i

(
� u� x) + �� iu� x

,
(E5)

(qu� )A = (qxyu� x)
y

+
1
48

� j
[(

� i � jq
) (

� iu� )]
+ � j

(
� v� y) + �� jv� y

,
(E6)

in which the fourth part of (50) deÞnes� i and� j and

� =
1
12

� jqx, � =
1
12

� iqy. (E7)

KeteÞan and Jacobson (2009) note that the AL scheme can be
expressed in the form given by (E5) and (E6) and these equations
are derived in detail in the appendices of KeteÞan (2006). For
height coordinates, the same expressions apply, withq replaced
byZ, u� byu andv� byv.

The original version of the AL scheme takesKe to be discretized
in the same way as in the original een scheme. AL propose a
modiÞed form for the kinetic energy in their equation (6.1). A
form more similar to that used above for the een scheme, the
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Þrst term of which gives the same gradients ofKA as the form
proposed by AL, is given by

2KA = u2x� B
+ v2yµ B

Š
1
12

� i � j
(
uyyvxx) . (E8)

The last term in (E8) is only used in the modiÞed scheme. It has
been introduced here to cancel contributions arising from the
Coriolis terms proportional to� and� in (E5) and (E6).

Using the above discretizations, one Þnds that in place of (61)
and (62) one obtains

� u�

� t
Š f0v�xy

+ g� x� � + u1� xu�x� B + v1� yu�yµ A

Š
1
12

(
u1� y� i � ju�µ A + � Bv1� x� i � ju�� A

)
+ v1� x

(
v�yµ B Š v�yµ A

)
+

(1 Š � B)
12

u1� x� i � jv�µ A

Š � I
f0v1

H

(
� �µ B Š � �µ A

)xyy

= 0,

(E9)

� v�

� t
+ f0u�xy

+ g� y� � + u1� xv�x� A + v1� yv�yµ B

Š
1
12

(
� Bu1� y� i � jv�µ A + v1� x� i � jv�� A

)
+ u1� y

(
u�x� B Š u�x� A

)
+

(1 Š � B)
12

v1� y� i � ju�� A

+ � I
f0u1

H

(
� � � B Š � �� A

)xxy

= 0,

(E10)

�� �

� t
+ u1� x� �x� B + v1� y� �yµ B + H

(
� xu� + � yv�) = 0, (E11)

where

� B =
{

0 for the original scheme,
1 for the modiÞed scheme.

}
(E12)

The Þrst lines of (E9) and (E10) consist of terms corresponding
to those in the original equations. For the modiÞed schemes, the
other terms are either zero or contribute only to diagonal terms
of the stability matrix, so the stability matrix is Hermitian, as it
was for the een scheme.

Appendix F: An interpretation of the stability of the original
scheme in isopycnal coordinates

Some insight into why the rather asymmetric matrix obtained for
the original schemes in isopycnal coordinates (see (77)) has such
simple solutions can be obtained by considering the potential
vorticity of the ßow and its perturbations. AL show that both
the een and AL schemes will not changeq in a ßow that has
uniform q. So one might anticipate that only perturbations with
potential vorticity identically zero will be able to grow and that
this will constrain the instabilities. The calculations presented
below support this interpretation.

The linearized form of the potential vorticity (22) is given by

q� =
� �

H
Š � �xy f0

H2
, (F1)

and hence, for wave-like solutions,

qE =
2is�
H	 x

vE Š
2is�
H	 y

uE Š
c� c� f0

cH

(c� E

H

)
, (F2)

whereqE is deÞned by analogy with (63). Using (F2), one sees
that the Þrst two rows of (77) can be written as

� uE Š ic� c� vE Š Rc
s�
X

c� E

H
+

i
2

TvH	 yqE = 0,

ic� c� uE + � vE Š Rcs�
c� E

H
Š

i
2

TuH	 xqE = 0.
(F3)

In other words, the asymmetric terms in the matrix in (77)
are proportional to qE. For perturbations withqE = 0, (77)
consequently simpliÞes to[

� Š ic� c� Š Rcs�
X

ic� c� � ŠRcs�
Š Rcs�

X ŠRcs� �

] [
uE
vE
c� E
H

]
= 0. (F4)

Hence� is the eigenvalue of a Hermitian matrix and is real-
valued. The solutions withqE = 0 are therefore neutrally stable.
Moreover, becauseqE = 0 implies a constraint relatinguE, vE and
� E, the system (F4) has a redundancy, which allows us to drop
the third row of equation (F4) and use the constraint to eliminate
� E from the Þrst two rows of (F4). This reduces (F4) to a 2× 2
matrix equation:[

� + A s� s�
	 x	 y Š ic� c� Š A s2�

	 x2

ic� c� + A
s2�

	 y2 � Š A s� s�
	 x	 y

] [
uE
vE

]
= 0, (F5)

whereA = 4ic2/ (c� c� f 2
0 ). Setting the determinant to zero gives

the numerical inertiaÐgravity wave dispersion relation,

� 2 = (c� c� )2 +
4c2

f 2
0

(
s2�

	 x2
+

s2�
	 y2

)
, (F6)

in agreement with the roots� 2 = Q2 given by the second part of
(81) and (82).

The dispersion relation for perturbations in whichqE is
non-zero can be determined by using (F3) to form a vorticity
equation. Multiplying the second part of (F3) by 2is� (H	 x)Š1

and subtracting 2is� (H	 y)Š1 times the Þrst part of (F3), one
obtains

�
(

2is�
H	 x

vE Š
2is�
H	 y

uE

)
Š

2c� c�

H

(
s�
	 x

uE +
s�
	 y

vE

)
+ (Tus� + Tvs� ) qE = 0.

(F7)

Subtractingc� c� f0(cH)Š1 times the last row of (77), one Þnds that

(� + Tus� + Tvs� ) qE = 0. (F8)

The factor in parentheses in (F8) can vanish only if� is real,
conÞrming that wave-like solutions with non-zero potential
vorticity are neutrally stable. Note that this factor agrees with
the factor� + P in (82).
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