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The linear stability of two well-known energy- and enstrophy-conserving schemes for the
vector-invariant hydrostatic primitive equations is examined. The problem is analyzed for
a stably stratified Boussinesq fluid on an f -plane with a constant velocity field, in height
and isopycnal coordinates, by separation of variables into vertical normal modes and a
linearized form of the shallow-water equations (SWEs). As found by Hollingsworth et al.,
the schemes are linearly unstable in height coordinate models, due to non-cancellation of
terms in the momentum equations. The schemes with the modified formulations of kinetic
energy proposed by Hollingsworth et al. are shown to have Hermitian stability matrices and
hence to be stable to all perturbations. All perturbations in isopycnal models are also shown
to be neutrally stable, even with the original formulations for kinetic energy. Analytical
expressions are derived for the smallest equivalent depths obtained using Charney–Phillips
and Lorenz vertical grids, which show that the Lorenz grid has larger growth rates for
unstable schemes than the Charney–Phillips grid. Test cases are proposed for assessing the
stability of new numerical schemes using the SWEs.
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1. Introduction

The vector-invariant form of the momentum equations expresses
the advection of momentum as the sum of the gradient of the
kinetic energy and the vector product of the velocity and vorticity.
This form is used to derive Kelvin’s circulation theorem (Pedlosky,
1987) and was used by Sadourny (1975) to discretize the shallow-
water equations (SWEs). In that article, Sadourny proposed two
schemes, demonstrating that one conserves energy and the other,
now known as the ‘ens’ scheme, conserves the volume integral of
potential enstrophy (the square of the potential vorticity). He later
devised the ‘een’ (energy and enstrophy) scheme, which for the
SWEs conserves the total energy for general flows and enstrophy
for non-divergent flows. This scheme was tested in a hydrostatic
primitive equation (HPE) model using pressure-based sigma
coordinates by Burridge and Haseler (1977). Arakawa and Lamb
(1981, hereafter referred to as AL) derived the Arakawa–Lamb
(AL) scheme which, for the SWEs, conserves the total energy
and enstrophy for general flows. AL also provided a proof of the
conservation properties of the een scheme.

Hollingsworth et al. (1983, HKRB hereafter) reported that the
een scheme as implemented by Burridge and Haseler (1977) was
prone to near-grid-scale instabilities, which reduced the kinetic
energy of the jet stream, particularly in their higher resolution

model. They provided a heuristic linear stability analysis that
accounted for the three-grid-point structure of the instabilities
in the horizontal and predicted that the growth rates should be
proportional to fu/c, where f is the Coriolis parameter, u is the
speed of the flow in the basic state and c = √

gH is the gravity-wave
speed. This prediction was consistent with their experimental
results for different speeds u and their finding that the modes
with highest vertical wave number (and smallest speeds c) are
the most unstable ones. From the dispersion relationship derived
by HKRB, it is clear that the instability is a form of destabilized
inertia–gravity wave. HKRB also proposed a modified scheme
involving reformulations of the kinetic energy gradient and the
mass fluxes for the een scheme and showed that it was effective
in suppressing the instabilities. A similarly modified form of the
AL scheme can also be used (see section 6 of AL) and Lazić et al.
(1986) derived a modified form of the een scheme for the E-grid.

There has recently been renewed interest in these instabilities
for two reasons. Firstly, some ocean models now use grids that
resolve the Rossby radius of deformation very well. Ducousso
and le Sommer (2016) found that the Nucleus for European
Modelling of the Ocean (NEMO) model, which uses the een
scheme, when configured with a one-nautical-mile grid spacing
had significantly reduced kinetic energy in the mesoscale flow,
unless the kinetic energy was reformulated as proposed by

c© 2016 Royal Meteorological Society and Crown Copyright, Met Office.
Quarterly Journal of the Royal Meteorological Society c© 2016 Royal Meteorological Society



564 M. J. Bell et al.

HKRB. Secondly, a number of researchers such as Ničković et al.
(2002), Thuburn (2008), Ringler et al. (2010), Skamarock et al.
(2012) and Gassmann (2013) are seeking to develop atmospheric
models using meshes with triangular, hexagonal or pentagonal
elements employing the vector-invariant momentum equations.
Gassmann (2013) discusses the Hollingsworth instability from a
historical perspective and concludes, in agreement with HKRB,
that the instability would be more pronounced the less stable
the stratification. She also proposes a method for choosing the
formulation of the kinetic energy on regular hexagonal grids, so
as to minimize the size of the term in the momentum equations
that leads to instabilities. Skamarock et al. (2012) show that
their scheme is prone to the Hollingsworth instability and use
Gassmann (2013)’s formulation of the kinetic energy to suppress
it.

As noted above, HKRB provided a good initial theoretical
analysis of the instability, but their derivation of the dispersion
relationship for the instability included the neglect of a term,
which was only justified by a rather ad hoc argument. Also,
some aspects of the occurrence of the instability have not been
clarified since the work of HKRB. Arakawa et al. (1992) argue
that the properties of isentropic coordinates ‘do not allow room
for’ the Hollingsworth instabilities. Arakawa (2000) notes that the
family of consistent energy- and enstrophy-conserving schemes
(including the een and AL schemes) that AL derived generally
behave well for the SWEs. He suggests that the Hollingsworth
instabilities arise in pressure or sigma coordinates ‘at least in
part’ because of the formal application of the schemes in these
coordinates, in which the layer depth h is replaced by the thickness
of model layers despite the fact that the model levels are not
material surfaces. This has left developers of new dynamical cores
uncertain how to test their schemes using the SWEs. This is
very inconvenient for them and a better understanding of the
occurrence of instabilities in easily accessible variants of the SWEs
is highly desirable.

This article has two main aims. The first is to confirm that
an idealized 3D basic state consisting of a uniform horizontal
flow (independent of x, y and z) in a stably stratified fluid on
an f -plane can suffer from Hollingsworth instabilities when the
original een and AL schemes are used to discretize the equations
of motion. Because the isopycnals in the basic state are flat, these
linear instabilities can be analyzed using separable solutions that
are the product of vertically varying normal modes and solutions
to linearized SWEs. The resulting linearized SWEs also determine
the stability of an appropriately balanced layer of shallow water
moving with the same velocity (u1, v1) on an f -plane. This result
will allow the potential for Hollingsworth instabilities in 3D
problems to be explored with new numerical schemes, using
appropriately specified 2D problems.

The second aim is to derive the matrices determining the
dispersion relationships for these linearized SWEs and to analyze
them in some detail. It is shown that the modifications proposed
by HKRB and AL to the een and AL schemes remove spurious
off-diagonal terms (non-cancelling advection terms) from the
stability matrix and recover its Hermitian form. This makes the
schemes stable for any linear disturbance to the idealized basic
states. The original een and AL schemes in isopycnal coordinates
are also shown to be neutrally stable to all perturbations.
Numerical results and an expression for the instabilities in height
coordinates suggest that the most unstable perturbations are fairly
closely aligned with the grid.

It is more natural to consider the simple 3D basic state described
above in an oceanic context, where variations in the surface
height of the ocean can easily occur and affect the pressures at
all depths, than in an atmospheric context. For this reason, the
analysis is presented using the Boussinesq equations, which are
appropriate for the ocean (rather than the equations of state
for a perfect gas, appropriate for the atmosphere). The normal
modes of the continuous equations for an atmosphere on a
sphere are also separable (provided one makes use of traditional

assumptions such as the shallow-atmosphere approximation) and
the equivalent depth of the vertical modes is independent of their
frequency if the motions are taken to be hydrostatic (Daley, 1988).
These points also hold for the vertically discrete equations studied
by Thuburn and Woollings (2005). We would therefore expect
our analysis to be relevant to atmosphere models as well as ocean
models.

The linear stability analysis of the states described in this article
is most safely approached by writing out the full nonlinear
governing equations and the description of the basic state
in discretized form, then deriving from these the linearized
equations and finally the separable solutions. This approach
is unnecessarily lengthy and, with some care, it is possible to
linearize the equations and derive the separable solutions using the
continuous equations and then discretize. Section 2 presents the
full nonlinear governing equations and the linearized equations
for their separable solutions, firstly for z-coordinates and secondly
for isopycnal coordinates. The derivations of these equations are
given in Appendices B and C. The linearized equations for the
solutions that vary in time and in the horizontal are then derived
by linearizing two sets of SWEs. The only difference between the
two sets of SWEs is that the generalized Coriolis terms in the one
relating to isopycnal coordinates are the product of the potential
vorticity, q, and a depth-weighted velocity u∗, whilst those for
height coordinates are the product of the vertical component of
the vorticity, Z, and the velocity u. It transpires that this difference
is of crucial importance.

Section 3 derives the vertical discretization of the modes in
isopycnal and height coordinates. The vertical modes with the
highest vertical wave numbers have small equivalent depths, as one
would expect from the vertical modes for the continuous problem.
It is shown that on the Lorenz grid the smallest equivalent depths
reduce as the number of vertical levels (K) increases at a rate that
is a factor of K2 faster than that of the continuous modes and that
this result is related to the presence of the computational mode
on the Lorenz grid. The resulting reduction in the phase speed of
the gravity waves (c) on the Lorenz grid for these modes increases
their Froude number (Fu) and exacerbates the Hollingsworth
instabilities.

Section 4 first describes the discretization of the SWEs using the
een scheme and derives the discrete form of the linearized SWEs
for both height and isopycnal coordinates. It then reduces the
analysis of the stability of the scheme to an eigenvalue problem
involving 3 × 3 matrices written in a non-dimensional form and
shows that, for the modified form of the een scheme, the matrices
are Hermitian and hence the scheme is stable. Section 4 also shows
that all linear perturbations are neutrally stable for the original een
scheme in isopycnal coordinates. Appendix E shows that the same
conclusions hold for the AL scheme and Appendix F provides an
interpretation of the stability of the schemes in isopycnal coordi-
nates. Section 4 ends by illustrating the dependence on the Froude
and Rossby numbers of the instabilities with the aid of analytical
calculations for some special cases and numerical evaluations.

Section 5 illustrates the nature of the instabilities further using
integrations of the SWEs and proposes test cases with doubly
periodic Cartesian domains that could be used to test whether
new numerical schemes suffer from these instabilities. Section 6
provides a concluding summary and discussion and the tables in
Appendix A provide a summary of the symbols used in the main
body of the article.

2. Model formulation and separation of variables

The governing equations will be taken to be a form of the
hydrostatic, incompressible, adiabatic, Boussinesq equations
suitable for a liquid. They will be written in Cartesian coordinates
and the Coriolis parameter f will be taken to have a constant value
f0. The horizontal kinetic energy per unit mass will be denoted by

Ke = 1

2
(u2 + v2), (1)
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the vertical component of the relative and total vorticities will be
denoted by ζ and Z respectively, with

ζ = ∂v

∂x
− ∂u

∂y
, Z = f0 + ζ , (2)

and ρ00 will denote a constant density.

2.1. Formulation in height coordinates

2.1.1. Governing equations

In height coordinates, the Bernoulli function � is given by

� = p/ρ00 + Ke, (3)

where p is the pressure field, which is in hydrostatic balance with
the density ρ and gravity g,

∂p

∂z
= −ρg. (4)

The horizontal momentum equations in vector-invariant form
are then

∂u

∂t
− Zv + w

∂u

∂z
= −∂�

∂x
+ AmDmu,

∂v

∂t
+ Zu + w

∂v

∂z
= −∂�

∂y
+ AmDmv,

(5)

where w is the vertical velocity, Am is a coefficient of viscosity and
Dm is a diffusive operator such as ∇2

H or ∂2/∂z2. The viscosity
will be set to zero, except in this section and section 4.6, where
the stabilizing effect of viscous terms on perturbations with small
Froude numbers is discussed.

The density, ρ, will be taken to be conserved following the
motion,

Dρ

Dt
= 0,

D

Dt
= ∂

∂t
+ u

∂

∂x
+ v

∂

∂y
+ w

∂

∂z
, (6)

and the flow will be assumed to be incompressible,

∂u

∂x
+ ∂v

∂y
+ ∂w

∂z
= 0. (7)

The domain will be taken to be unbounded in x and y and
to have a flat boundary at z = −H where the vertical velocity is
zero. Attention will be focused solely on the baroclinic modes,
for which, to a very good approximation, the upper boundary at
z = 0 also has zero normal velocity, so

w = 0, z = 0, −H. (8)

The barotropic mode satisfies the shallow-water equations (to a
very good approximation) and is not considered further in this
section.

2.1.2. Separable solutions to the linearized equations

The evolution of very small amplitude perturbations can be
determined by linearizing the hydrostatic Boussinesq equations
about a basic state.

The assumed basic state consists of a stably stratified density
field ρ0(z), which is in hydrostatic balance with the pressure field
p0(z), and a horizontal velocity field with components u = u1

and v = v1, which does not depend on x, y, z or t. This velocity
field is in geostrophic balance with a pressure field p1, which
is independent of z, and the vertical velocity w0 is zero. The
non-zero velocity in the basic state and the nonlinearities in the
equations of motions give the potential for instabilities.

These linearized equations enjoy separable solutions. The
derivation is detailed in Appendix B, which is a straightforward
generalization of section 6.11 of Gill (1982). Denoting the small
amplitude perturbations by primed variables, functions varying
only in the horizontal and time by tildes and functions varying
only in the vertical by hats, the horizontal velocity and pressure
pertubations are expressed in the following forms:

u′ = ũ(x, y, t)
p̂(z)

gρ00
, v′ = ṽ(x, y, t)

p̂(z)

gρ00
,

p′ = η̃(x, y, t)p̂(z).

(9)

The solutions dependent only on x, y and t are determined by
the linearized horizontal momentum equations,

∂ ũ

∂t
− f0ṽ − ζ̃v1 = −∂�̃

∂x
+ AmDmũ,

∂ ṽ

∂t
+ f0ũ + ζ̃u1 = −∂�̃

∂y
+ AmDmṽ,

(10)

where

�̃(x, y, t) = gη̃ + u1ũ + v1ṽ, (11)

and a continuity equation

∂η̃

∂t
+ u1

∂η̃

∂x
+ v1

∂η̃

∂y
+ He

(
∂ ũ

∂x
+ ∂ ṽ

∂y

)
= 0, (12)

where He is the equivalent depth (a separation constant). This
system is the linearized form of a shallow-water system (see
below).

The vertical structure of the perturbed variables is given by

dp̂

dz
= −gρ̂, (13)

Heρ̂ = −dρ0

dz
ĥ, (14)

p̂

gρ00
= dĥ

dz
, (15)

where ρ̂(z) and ĥ(z) describe the vertical variation of the
perturbation’s density and vertical velocity fields. The boundary
conditions are given by

ĥ = 0, z = 0, −H. (16)

2.2. Formulation in isopycnal coordinates

2.2.1. Governing equations

Following section 3.9.1 of Vallis (2006), we write the density and
pressure fields in the form

ρ = ρ00 + δρ, p = p0(z) + δp, (17)

dp0

dz
= −gρ00. (18)

The buoyancy and an inverse measure of the stratification for this
system are then given by

b = − gδρ

ρ00
, σ = ∂z

∂b
. (19)

If the isopycnal coordinates were used in a layer model, σ would
represent the thickness of the layers. The Montgomery potential
and Bernoulli function are given by

M = δp

ρ00
− bz, � = M + Ke. (20)
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The horizontal momentum equations are then given by

∂u

∂t
− qv∗ = −∂�

∂x
,

∂v

∂t
+ qu∗ = −∂�

∂y
,

(21)

where

q = Z/σ (q), u∗ = σ (u)u, v∗ = σ (v)v. (22)

Here q is the potential vorticity, u∗ and v∗ are proportional to
the fluxes within the layers (i.e. the velocities multiplied by the
thicknesses of the layers) and the superscripts (q), (u) and (v)
indicate the location at which σ is calculated. They have been
included at this stage so that the discretized form of the linearized
equations can be inferred easily in section 4.1. As usual, the partial
derivatives in the momentum equations are evaluated with b held
constant and the diapycnal velocities have been set to zero.

The hydrostatic equation then takes the form

∂M

∂b
= −z, (23)

and, for an ideal Boussinesq fluid, the continuity equation is given
by

Dσ

Dt
= ∂σ

∂t
+ u

∂σ

∂x
+ v

∂σ

∂y
= −σ

(
∂u

∂x
+ ∂v

∂y

)
, (24)

in which all partial derivatives are again evaluated with b held
constant.

Denoting the buoyancy at z = 0 and z = −H by
b(z = 0) = b(0) and b(z = −H) = b(−H), respectively, the
boundary conditions of no normal flow are given by

Dz

Dt
= 0, b = b(0), b(−H). (25)

2.2.2. Separable solutions to the linearized equations

Assuming an analogous basic state to that of the height coordinates
model, the separable solutions that depend only on x, y and t, in
a continuous model satisfy equations of the same form as those
for the height coordinate. However, in a numerical isopycnal
model, extra terms arise because the layer thicknesses (σ ) in (22)
are calculated at different points. Appendix C shows that the
separable solutions depending on x, y and t satisfy the following
horizontal momentum equations:

∂ ũ

∂t
− f0ṽ − ζ̃v1 − f0v1

He

(
η̃(v) − η̃(q)

)
= −∂�̃

∂x
,

∂ ṽ

∂t
+ f0ũ + ζ̃u1 + f0u1

He

(
η̃(u) − η̃(q)

)
= −∂�̃

∂y
.

(26)

In the horizontally discretized form of the first part of equation
(26) the terms η̃(v) and η̃(q) orginate from different points. They
consequently represent different averages of η and their difference
is non-zero. The separable solutions also satisfy the continuity
equation (12), which is the same as that for the height coordinate
model.

Appendix C also shows that the vertical structure of the
separable solutions is given by

g
dM̂

db
= −ĥ, (27)

He
dĥ

db
= σ0M̂, (28)

where ĥ describes the vertical variation in the height z′ of the
perturbations to the isopycnals and He is again the separation
constant. The boundary conditions are given by

ĥ = 0, b = b(0), b(−H). (29)

2.3. Formulation for shallow water

The shallow-water equations, for a layer of constant density in
which the bottom of the fluid is at height zb and the depth of the
fluid layer is η, are given by

∂u

∂t
− Zv = −∂�

∂x
,

∂v

∂t
+ Zu = −∂�

∂y
,

∂η

∂t
+ ∂

∂x
(ηu) + ∂

∂y
(ηv) = 0,

(30)

where the Bernoulli potential is given by

� = g(η + zb) + Ke. (31)

A steady basic state with a constant horizontal velocity field
(u1, v1) and fluid depth, He, which is independent of position, is
obtained provided the bathymetry, zb, is given by

gzb = gzb0 + f0(v1x − u1y), (32)

where b0 is a constant.
Writing u′ = u − u1 = ũ, v′ = v − v1 = ṽ and η′ = η − He =

η̃ and linearizing (30) about this basic state, one obtains the
equations (10) and (12) derived for height coordinates.

If one defines

q = Z

η
, u∗ = η(u)u, v∗ = η(v)v, (33)

replaces Zv by qv∗ and Zu by qu∗ in (30) and linearizes about the
same basic state, one obtains the equations (26) and (12) derived
for isopycnal coordinates.

A second way to obtain a steady basic state with a fluid depth
independent of position is to use a fictitious force added to the
momentum equations. One of the numerical test cases in section 5
uses a fictitious force and the other uses a sloping bathymetry to
balance the zonal flow.

3. Analysis of the discrete vertical modes

3.1. Discretization in height coordinates

The natural discretization in the vertical of the level model is not
clear-cut and it is well known that there are a number of options;
see Tokioka (1978), Thuburn and Woollings (2005) and Girard
et al. (2014). Most ocean models use the Lorenz grid illustrated
in Figure 1(a), in which u, v, p and ρ are stored on full levels and
w (and therefore ĥ) is stored at half-levels. The vertical structure
equations (13)–(15) are then discretized as

p̂k+1 − p̂k = − g

2
(ρ̂k+1 + ρ̂k) (	z)k+1/2, (34)

Heρ̂k = −dρ0

dz

1

2

(
ĥk+1/2 + ĥk−1/2

)
, (35)

p̂k(	z)k = gρ00

(
ĥk+1/2 − ĥk−1/2

)
, (36)

and the boundary conditions (16) as

ĥ1/2 = ĥK+1/2 = 0. (37)
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Figure 1. The arrangement of variables using (a) height coordinates and (b)
isopycnal coordinates. In both grids, u and v are held at full levels and the upper
and lower boundaries are at half-levels.

3.2. Discretization in isopycnal coordinates

The natural discretization in the vertical of the isopycnal model is
to take the horizontal boundaries to lie at half levels and to store
u, v and M at full levels and z (and therefore ĥ) at half levels, as
in Figure 1(b). Denoting the levels with a subscript k, the level
number increasing with height, (27) and (28) are discretized as

g(M̂k+1 − M̂k) = −ĥk+1/2(	b)k+1/2, (38)

He(ĥk+1/2 − ĥk−1/2) = σ0kM̂k(	b)k. (39)

For a grid with K levels, the boundary conditions (29) are simply

ĥ1/2 = ĥK+1/2 = 0. (40)

One sees that (36) and (37) correspond to (39) and (40).
Equations (34) and (35), when combined, correspond to (38), but
in a form that involves more vertical averaging. The discretization
used above for the isopycnal model corresponds to that for the
best category in Thuburn and Woollings (2005), obtained using
a Charney–Phillips grid with potential temperature evaluated at
half-levels .

3.3. Discretized vertical modes

The impact of the vertical discretization on the equivalent depth,
He, which is the separation constant and the eigenvalue for the
normal modes in the vertical, can be illustrated for the case
of uniform stratification and grid spacing. Then the vertical
structure equations for height coordinates (34)–(36) reduce to a
single equation:

ĥk+3/2 − 2
ĥk+1/2 + ĥk−1/2 = 0, (41)

with


 ≡ 4 − n2

4 + n2
,

n2 ≡ − g

ρ00

dρe

dz

	z2

gHe
≈ 	z	b

gHe
.

(42)

Together with its boundary conditions, (41) defines an eigenvalue
problem for 
. These eigenvalues determine n2 and then He

through (42).
Similarly, (38) and (39) for isopycnal coordinates reduce to

(41) with


 ≡ 1 − m2/2, m2 = σ0(	b)2

gHe
= 	z	b

gHe
. (43)

The last identity above follows from the second part of (19).
The solutions of (41) are given by

ĥk+1/2 = Re{CWk}, W = 
 ± i
√

1 − 
2. (44)

W lies on the unit circle when −1 ≤ 
 ≤ 1 and hence can also
be written in the form W = exp iθ , where θ is a real argument.
The solutions written in this form that also satisfy the boundary
conditions, (40) for isopycnal coordinates or (37) for height
coordinates, are given by

ĥk+1/2 = C sin(θk), θ = Nπ

K
, (45)

where N is an integer and 1 ≤ N ≤ K.
The solution (45) with N = K has ĥk+1/2 = 0 for all integers k

within the domain, so its vertical velocities are zero. From (36), it
also has p̂k = 0 for all points in the domain and hence, by (9), zero
horizontal velocities. When He = 0, (35) does not constrain ρ̂ and
(34) is satisfied provided ρ̂k = −ρ̂k+1 at all points in the domain.
Hence (45) with N = K corresponds to the computational mode
on the Lorenz grid.

The solutions with N = K − 1 are the ones with the smallest
equivalent depths that can give rise to Hollingsworth instabilities.
We now calculate their equivalent depths for the realistic case
with K 
 1. For these modes,

W ≈ −1 + iπ

K
. (46)

Equating the second part of (44) and (46), one infers that

√
1 − 
2 ≈ π

K
. (47)

As 
 is close to −1, one can take 1 − 
2 = (1 − 
)(1 + 
) ≈
2(1 + 
) and infer from (47) that


 ≈ −1 + π2

2K2
. (48)

Using (42) and (43) in (48), one finds that, for height and
isopycnal coordinates respectively,

n2 ≈ 16K2

π2
and m2 = 2(1 − 
) ≈ 4. (49)

From the second parts of equations (42) and (43), the equivalent
depth, He, is proportional to m−2 and also to n−2. For the
Charney–Phillips grid (and the continuous equations), He is
inversely proportional to the square of the vertical wave number.
If one chooses g so that He = 1000 m for the first baroclinic mode
then, for the largest vertical wave number on the Charney–Phillips
grid, He = 1000 K−2 m. For a grid with 100 vertical levels, this
gives He = 0.1 m for the most rapidly varying mode. For height
coordinates using the Lorenz grid, (49) shows that He for the
most rapidly varying mode is a factor of 1

4 π2 K−2 smaller, which
means that it is 2.5 × 10−4 m in the above example.

The solutions above are consistent with those derived by
Tokioka (1978). It is, however, clearer from the analysis above
than that of Tokioka (1978) that the solutions satisfying (47)
have the fastest vertical variation and smallest equivalent depths
of all the vertical modes that need to be considered on the
Charney–Phillips and Lorenz grids. Therefore, all the vertical
modes on the Charney–Phillips grid are well-behaved and
have equivalent depths of the same order of magnitude as the
continuous equations, whilst the modes with the most rapid
variation in the vertical on Lorenz grids have much smaller
equivalent depths because of their similarity to the computational
mode.
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Figure 2. The staggering of variables on the C-grid. This figure and the indexing
is based on Arakawa and Lamb (1981).

4. Analysis of the discretized SWEs

4.1. Formulation of een scheme

For simplicity, the equations will be written in Cartesian
coordinates and discretized on a C-grid with uniform, but not
necessarily isotropic, grid spacing. The arrangement of variables
on the C-grid is illustrated in Figure 2.

The following difference and average operators will be used.
Let ξ denote any of the coordinate directions x, y and z, ι denote
its discrete indexing and ψ denote any function of ξ . Then

ψ
ξ

ι ≡ 1

2
(ψι−1/2 + ψι+1/2), (	ξ)ι ≡ ξι+1/2 − ξι−1/2,

(δξψ)ι ≡
(
ψι+1/2 − ψι−1/2

)
(	ξ)ι

, (διψ)ι ≡ (	ξ)ι(δξψ)ι.

(50)

The index for which the quantity is calculated is usually
suppressed. All of these operators commute with each other
and obey the associative laws of arithmetic. Adcroft et al. (1997)
provide a useful summary of identities they satisfy.

The discretization on a C-grid of ζ as defined by the first part
of (2) is given by

ζ = δxv − δyu, (51)

and the discretization of the x- and y-derivatives of the Bernoulli
function is given by δx� and δy�, respectively.

The averaging operators needed to define the modified een
scheme are given by

ψ
μE ≡ 1

3
ψ + 2

3
ψ

xx
, ψ

νE ≡ 1

3
ψ + 2

3
ψ

yy
, (52)

where the ‘E’ subscript indicates the expression is relevant to the
een scheme. Additional averaging operators μF and νF, which
allow the original and modified schemes to be concisely defined,
are given by

ψ
μF ≡ ψ

μE , ψ
νF ≡ ψ

νE (modified scheme),

ψ
μF ≡ ψ , ψ

νF ≡ ψ (original scheme).
(53)

For shallow-water and isopycnal coordinate models, the een
scheme calculates (22) using

η(q) = ηxy, η(v) = ηyμF , η(u) = ηxνF . (54)

As noted by HKRB, this averaging of the layers also needs to be
used in the discretization of the mass fluxes in the continuity
equation,

∂η

∂t
+ δx

(
ηxνF u

) + δy
(
ηyμF v

) = 0, (55)

to ensure conservation of total (kinetic plus potential) energy
with the modified form of the kinetic energy,

2KE = u2
xνF + v2

yμF
. (56)

The een scheme for the SWEs associated with height
coordinates discretizes the terms Zv and Zu of (30) using

(Zv)E = 2

3
(Z

x
v)

xy
+ 2

3

(
Z

y
vxy

)
− 1

3
(Zvx)

y
,

(Zu)E = 2

3
(Z

y
u)

xy
+ 2

3

(
Z

x
uxy

)
− 1

3
(Zuy)

x
.

(57)

Expressions for the SWEs associated with isopycnal coordinates
are obtained by replacing Z, u and v by q, u∗ and v∗, respectively,
in (57). These expressions were noted in HKRB and are briefly
derived from the expression for the een scheme used by AL in
Appendix D.

4.2. Linearization of the een scheme

Using δxψ
2 = 2ψ

x
δxψ , one finds that the linearized kinetic

energy gradient in the x- and y-directions for (56) is given by

δxK ′
E = u1δxu′xνF + v1δxv′yμF ,

δyK ′
E = u1δyu′xνF + v1δyv′yμF

.
(58)

Introducing

δI =
{

0 for height coordinates,
1 for isopycnal coordinates,

}
(59)

in order to allow the expressions for height and isopycnal
coordinates to be combined, linearizing (57), one obtains

(Zv)′
E = f0v′xy + ζ ′yμE v1 + δI

f0v1

H

(
η′μF − η′μE

)xyy

,

(Zu)′
E = f0u′xy + ζ ′xνE u1 + δI

f0u1

H

(
η′νF − η′νE

)xxy

.

(60)

Using (51) in (58) and (60), one sees that the discrete linearized
form of the momentum SWE (30) is given by

∂u′

∂t
− f0v′xy + gδxη

′ + u1δxu′xνF + v1δyu′yμE

+v1δx

(
v′yμF − v′yμE

)
− δI

f0v1

H

(
η′μF − η′μE

)xyy

= 0,

∂v′

∂t
+ f0u′xy + gδyη

′ + u1δxv′xνE + v1δyv′yμF

+u1δy

(
u′xνF − u′xνE

)
+ δI

f0u1

H

(
η′νF − η′νE

)xxy

= 0.

(61)

The first line of each equation above consists of terms
corresponding to those present in the continuous equations.
The second line consists of additional terms arising from the
discretization employed, which have the potential to give rise to
spurious effects (the non-cancelling terms of HKRB). In HKRB,
the basic flow was taken to be zonal, v1 = 0, and the terms
proportional to δI were not considered. The instability of the
original scheme was traced by HKRB to lack of cancellation
between u′xνF = u′x and u′xνE in the first term on the second
line of the y-component of the momentum equation. The kinetic
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energy in their modified scheme was re-formulated as in (56) to
ensure that this term is identically zero (u′xνF = u′xνE ).

Both terms on the second line of each of the equations in (61)
are zero for the modified schemes in both height and isopycnal
coordinates. The stability of the modified schemes derived below is
due in large part to this. For isopycnal coordinates, the additional
term proportional to δI is only zero when the mass fluxes are
calculated using (54).

Linearizing (55), one also finds that

∂η′

∂t
+ u1δxη′xνF + v1δyη′yμF + H

(
δxu′ + δyv′) = 0, (62)

where H is the unperturbed depth.

4.3. Stability matrices

The properties of the numerical schemes are best analyzed in
terms of non-dimensional parameters. So it will be assumed that
the perturbations are of a wave-like form:

(u′, v′, η′) = (uE, vE, ηE)exp

(
iκx

	x
+ iλy

	y
− iωf0t

)
, (63)

where ω is a non-dimensional frequency normalized using f0, and
κ and λ are non-dimensional horizontal wave numbers for the x-
and y-directions normalized using the grid spacings 	x and 	y,
respectively. As is usual in linearized stability calculations, physical
quantities are given by the real parts of the above expressions and
of those obtained below. Defining

cp = cos(p/2), sp = sin(p/2), p = κ , λ, (64)

for any quantity ψ which varies with x, y and t in the same way
as the quantities in (63), the x- and y-averaging operators give

ψ
x = cκψ , ψ

y = cλ, ψ (65)

and the differencing operators δx and δy give

δxψ = 2i

	x
sκψ , δyψ = 2i

	y
sλψ. (66)

It is also convenient to introduce the coefficients corresponding
to the averaging operators,

μE = 1

3
(1 + 2c2

κ), νE = 1

3
(1 + 2c2

λ), (67)

and the associated modified coefficients, which are given by

μF = μE, νF = νE (modified scheme),

μF = νF = 1 (original scheme).
(68)

One can define the other non-dimensional quantities in a
number of different ways. A convenient approach is to define
Froude numbers for the basic flows u1 and v1:

Fu = u1

c
, Fv = v1

c
, (69)

and to complete the set of non-dimensional parameters using

Rc = 2c

f0	y
, X = 	x

	y
. (70)

Rc is twice the ratio of the Rossby radius (c/f0) and the grid spacing
	y (the factor of 2 has been introduced to simplify expressions
later) and X is the ratio of the grid spacings. In models using
latitude and longitude coordinates, the latter ratio is small near the
pole, so the range 0 < X ≤ 1 is of interest. The grid-scale Rossby

numbers Ru and Rv for the flows u1 and v1 can be constructed
using the above parameters:

Ru = 2u1

f0	x
= FuRc

X
, Rv = 2v1

f0	y
= FvRc. (71)

We note that the factors of 2 in (71) result in values for Ru and
Rv that are a factor of 2 larger than the values one would obtain
using the classical definition of grid-scale Rossby numbers.

Substituting the above relations into the discrete linearized
equations (61) and (62), after some algebra (doing normalizations
using f0, H, g and c), one obtains a matrix form of the stability
problem:

[
ω − E11 −icκ cλ − E12 − Rcsκ

X − iE13

icκ cλ − E21 ω − E22 −Rcsλ + iE23

− Rc sκ
X −Rcsλ ω − E33

] [
uE
vE
cηE
H

]

= 0,

(72)

where

E11 = Rusκ cκνF + RvsλcλμE,

E22 = Rusκ cκνE + RvsλcλμF,

E33 = Rusκ cκνF + RvsλcλμF,

E12 = RvX−1sκ cλ(μF − μE),

E21 = RuXsλcκ(νF − νE),

E13 = δIFvcκ c2
λ(μF − μE),

E23 = δIFuc2
κ cλ(νF − νE).

(73)

In (72), the diagonal elements E11, E22 and E33 represent
advection of u′, v′ and η′, respectively, by the basic flow (u1, v1),
−cκ cλ in the same element as iE12 represents the Coriolis term
−f0v′ in (B3) and cκ cλ in the same element as iE21 represents the
Coriolis term f0u′ in (B4). Note that the off-diagonal elements
E12, E21, E13 and E23 are all equal to zero for the modified een
scheme.

4.4. Stability of the modified een scheme

For the modified een scheme, because E12 = E21 = E13 = E23 =
0, the matrix equation (72) has the form

(ωI + H)z = 0, (74)

where I is the identity matrix and H is a Hermitian matrix, i.e.
a matrix with its transpose equal to its complex conjugate.
All eigenvalues of Hermitian matrices are real-valued and
hence the corresponding perturbations are neutrally stable. The
eigenvectors of Hermitian matrices are also orthogonal (or can be
chosen to be when two or more of the eigenvalues are identical).
The gravity-wave and Rossby-wave solutions of (72) have different
phase speeds and hence different eigenvalues, so are automatically
orthogonal. In conclusion, linear perturbations of the form (63)
can be used to represent any initial conditions and the basic flow
is neutrally stable to all linear perturbations.

4.5. Stability in isopycnal coordinates

Consider now the stability problem (72) for the original scheme
using isopycnal coordinates (δI = 1). It will be convenient to
introduce

Tu ≡ Rucκ(1 − νE), Tv ≡ Rvcλ(1 − μE). (75)

Using these definitions with (73), one sees that

E11 = E33 − Tvsλ, E22 = E33 − Tusκ (76)
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and (72) becomes[
� + Tvsλ −icκ cλ − Tv

sκ
X −Rc

sκ
X − iI13

icκ cλ − TuXsλ � + Tusκ −Rcsλ + iI23
−Rc

sκ
X −Rcsλ �

] [
uE
vE
cηE
H

]

= 0,

(77)

in which

I13 ≡ cκ cλTvR−1
c , I23 ≡ cκ cλTuR−1

c , (78)

and

� = ω − E33 = ω − Rusκ cκ − Rvsλcλ, (79)

is the Doppler-shifted non-dimensional frequency of the
perturbation.

By direct calculation of the determinant DM of the matrix in
(77), one finds that

DM = � 3 + P� 2 − Q2� − PQ2, (80)

where

P = Tusκ + Tvsλ,

Q2 = c2
κ c2

λ + R2
c s2

κX−2 + R2
c s2

λ.
(81)

Substituting � = −P into (80), one sees that it is a solution of
DM = 0. Hence it is easy to factorize (80),

DM = (� + P)(� 2 − Q2). (82)

The solutions of DM = 0 with � = ±Q are gravity waves and the
solutions with � = −P are Rossby waves; both sets of solutions
are neutrally stable.

An interpretation of this result is presented in Appendix F.

4.6. Instabilities of the original schemes

There are, of course, general expressions for the solutions of
the cubic equations derived from setting the determinant of the
matrix in (72) to zero, but the resulting expressions for the
growth rates of the instabilities present in the original scheme are
complicated and do not aid understanding. The expressions for
instabilities aligned with the grid are much simpler than those for
the general case so, following HKRB, these are considered first
in this section. The solutions obtained numerically motivated
the calculations for very small equivalent depths presented at the
end of the section. The solutions are only presented for the een
scheme, but entirely analogous arguments and solutions hold for
the AL scheme.

4.6.1. Instabilities aligned with the grid

We will consider instabilities that are aligned with the grid and,
without loss of generality, take κ = 0 (rather than λ = 0). Both u1

and v1 will be allowed to be non-zero (which was not the case in
HKRB). κ = 0 implies that sκ = E12 = 0 and cκ = μE = 1. One
then finds that E13 = 0 whether or not δI = 0 and

E11 = E22 = E33 = Rvsλcλ. (83)

Consequently it is useful to introduce the Doppler-shifted non-
dimensional frequency

� = ω − Rvsλcλ. (84)

Setting the determinant of the matrix in (72) for the original
een scheme to zero, one of the solutions is � = 0 and the other
solutions have

� 2 = a2 + i (1 − δI) J, (85)

where

a2 ≡ c2
λ + R2

c s2
λ, J ≡ FuRcsλcλ(1 − νE). (86)

Equations (85) and (86) are essentially the same as (6) in
HKRB and are clearly a version of the dispersion relation for
inertia–gravity waves. The final term on the right-hand-side
of (85) is purely imaginary and destabilizes the inertia–gravity
waves. When δI = 1, this term is zero and the solutions for �

are all real. So the SWEs discretized using q in the Zu and Zv
terms and isopycnal coordinate models should not suffer from
symmetric instabilities of the kind discovered by Hollingsworth
et al. (1983). This result is consistent with the comments made
in Arakawa (2000) that were noted in the Introduction and the
results of the previous subsection.

The dependence of the non-dimensional growth rate on
the non-dimensional parameters for height coordinate models
(δI = 0) can be found by writing � ≡ �r + i�i in (85) and
eliminating �r:

2� 2
i = −a2 +

√
a4 + J2. (87)

This solution to (72) has made no assumptions or approximations
other than κ = 0.

The growth rate �i hence depends on the ratio J/a2. When
J ≈ a2 or J 
 a2, �i is relatively insenstive to a and, to within
50%,

� 2
i ≈ J/2, a2 ≤ |J|. (88)

This is the formula derived by HKRB for a slightly less general
case. For the case with a2 
 |J|, evaluating (87) using a Taylor
series, one finds that

�i ≈ |J|
2a

, a2 
 |J|. (89)

The equivalent depths and associated velocities c in the ocean
vary greatly. Barotropic modes in water of 4 km depth have
c ≈ 200 m s−1, whilst the first baroclinic mode has c ≈ 3 m s−1.
As discussed in section 3, when the number of vertical levels is
denoted by K, the highest vertical wave number mode in a model
using the Charney–Phillips grid has c ≈ 3 K−1 m s−1 and that in
one using the Lorenz grid has c ≈ 3

2π K−2 m s−1. In a model with
a 10 km grid in the midlatitudes, f 	x ≈ 1ms−1. Hence, for the
high wave-number baroclinic modes a2 ≈ c2

λ and J ≈ XRu and
when X is of order 1 and Ru is larger than or of order 1, the growth
rate, �i, is given by (88). For the barotropic modes, a ≈ csλ/f0

and �i is given by (89).
For the baroclinic modes using (88), the second part of (86),

(64) and the second part of (67), one sees that the most unstable
perturbations have the largest values of

J = 2

3
FuRc sin3 λ

2
cos

λ

2
. (90)

Differentiating J with respect to λ, one finds (in agreement with
HKRB) that it is a maximum for the three grid-point wave with

λ = 2π

3
, J =

√
3FuRc

2
√

2
. (91)

When FuRc = XRu 
 1, as is often the case with modern grids,
these modes can grow very rapidly. For example when Ru = 10,
Jmax ≈ 6 and �i ≈ 3. With f0 = 10−4 s−1, the perturbation would
increase by a factor of e ≈ 2.7 in (f0� )−1 s, which is about
3.3 × 103 s, i.e. just less than an hour.

For the barotropic modes

�i ≈ |J|
2a

= Fucλ(1 − νE) = 2

3
Fu sin2 λ

2
cos

λ

2
. (92)

Differentiating, one finds that �i is a maximum when cos λ =
3−1/2. In the ocean, Fu is typically less than or of order 0.01 and
the maximum value of �i = 4Fu/(9

√
3).
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Figure 3. Growth rates, ωi, for the original een scheme using height coordinates for a flow aligned with the grid (v1 = 0), X = 1 and Ru = 10 as functions of (a) κ

with λ = 2π/3 and (b) λ with κ = 0.

4.6.2. Instabilities for very small Froude or Rossby numbers

Consider next the instabilities obtained in height coordinates
when Fu and Fv are very small compared with Ru and Rv. For this
case, E13 ≈ E23 ≈ 0 and all the Eij terms are proportional to Ru or
Rv. As Fu and Fv tend to zero, only the last element in the last row
and the last column of the stability matrices remain non-zero.
The instabilities are therefore determined by the determinant of
the upper-left 2 × 2 submatrix.

In practice, the growth rates of the instabilities are likely to be
reduced by dissipative fluxes. Vertical diffusion of momentum is a
parametrization of an important physical process in ocean models,
which usually has large coefficients within the surface boundary
layer and is a sufficiently fast process to need to be calculated
implicitly. As the specification of the viscous coefficients varies
considerably from one numerical model to another, in the analysis
below it is specified simply as being proportional to Am, that is we
set AmDmu = −Amu, leaving the dependence on the vertical (and
horizontal) wave numbers of the disturbance for the reader to
specify. These viscous dissipation terms only make contributions
to the diagonal elements in the upper two rows of the stability
matrix. The revised diagonal elements, E′

11 and E′
22, are given by

E′
11 = E11 − iAmf −1

0 , E′
22 = E22 − iAmf −1

0 . (93)

Because the determinant in (72) reduces to just the upper left
2 × 2 submatrix multiplied by E33 − ω, the solutions consist of
the Doppler-shifted ‘geostrophic’ mode with ω = E33 and two
other solutions, which satisfy

ω = E′
11 + E′

22

2
± S1/2, (94)

S ≡
(

E′
11 − E′

22

2

)2

− (icκ cλ + E12) (icκ cλ − E21) . (95)

The first term in (94) is a Doppler-shifted frequency with a
decay rate equal to Amf −1

0 , which is what one might expect from
the viscous dissipation. Evaluating S with κ = 0, one sees that
sκ = 0, μE = 1 and E′

11 = E′
22 and hence that

S = −icλ (icκ cλ − E21) = c2
λ + i

2X

3
Rus3

λcλ. (96)

When the imaginary part of S is non-zero, one of the two solutions
is unstable in the limit of small viscosity.

Evaluating ∂S/∂κ for any λ with κ = 0, one finds that

∂S

∂κ
= 0. (97)

This implies that ∂ωi/∂κ = 0 for any λ with κ = 0. This shows
that the growth rates are stationary in the direction of κ when the
perturbations are aligned with the grid. Taken with the numerical
results, it strongly suggests that the fastest growing perturbations
are aligned with the grid for the limit of small Froude
number.

An analysis of the instabilities when the Rossby number is
very small can also be carried out. Denoting the eigenvalue
solutions for Ru = Rv = 0 by ω0, the gravity-wave solutions
have

ω2
0 = c2

κ c2
λ + R2

c

(
s2
λ + s2

κ

X2

)
, (98)

and the Rossby waves have ω0 = 0. Linearizing the determinant of
the matrix in (72) about these solutions and writing ω = ω0 + ω1,
to first order in Ru and Rv one finds that the gravity waves have

ω1i = cκ cλ

2ω0
(E21 − E12), (99)

and the Rossby waves have ω1i = 0.

4.7. Numerical evaluations of solutions of the stability matrices

Figure 3 presents numerical evaluations of the fastest growth
rates obtained from (72) for a basic flow with v1 = 0, using height
coordinates (δI = 0) with Ru = 10 and X = 1, for a number of
values of Fu. The corresponding figure for the AL scheme is
similar, except that the non-dimensional maximum growth rate
is approximately 1.2 rather than 1. Figure 3(a) plots the non-
dimensional growth rates ωi as a function of κ with λ = 2π/3
and Figure 3(b) plots ωi as a function of λ with κ = 0. From
Figure 3(a), it is apparent that when Fu 
 1 the fastest growing
disturbances have κ � 1. Figure 3(b) shows that the maximum
non-dimensional growth rate when Fu = Ru = 10 is close to 1.
These disturbances increase in magnitude by a factor of e ≈ 2.7
in f −1

0 s. At midlatitudes, f −1
0 ≈ 104 s, which is just less than 3 h.

From Figure 3, it is also clear that the growth rate at the chosen
value of Ru is strongly dependent on the Froude number (Fu),
being weak when Fu < 0.1 and strong when Fu > 5. High values
of the Froude number are obtained for the highest vertical modes,
particularly on the Lorenz grid.
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Figure 4. Growth rates, ωi , for the original een scheme using height coordinates
for a flow aligned with the grid (v1 = 0), X = 1, Ru = 10 and Fu = 10 as functions
of λ with κ = 0. Solid line: (72). Dash–dotted line line: (88). Dashed line: (89).

Figure 4 provides a comparison of the solutions of (88) and
(89) with those of (72) calculated using Fu = Ru = 10 and X = 1.
The dashed lines are solutions of (89) with |J| < a2 and the
solid line is the solution of (72). Clearly the agreement is good.

The dash-dotted line in Figure 4 is the solution of (89). This
solution depends only on Ru and is expected to hold only
when Fu is very large. Comparing Figures 3(b) and 4, one
sees that the approximation requires Fu to be very large to be
accurate.

Figure 5 illustrates the growth rates of the unstable solutions
of (72) for the original een scheme using height coordinates as
a function of κ and λ for four combinations of Ru and Fu when
X = 1. The fastest growing solutions have growth rates similar to
the fastest growing solutions with κ = 0 and their wave number
is quite closely aligned with the λ-axis, particularly when Fu is
large.

Figure 6(a) shows the maximum values of ωi obtained for
all κ and λ as a function of Fu, on the abscissa, and Ru when
X = 1. The largest growth rates are obtained when both Fu

and Ru are large, values of ωi as large as 2.2 being obtained
when Ru = Fu = 50. These perturbations take less than 90 min
to double in amplitude at midlatitudes. The corresponding
plot (not shown) of maximum growth rates for perturbations
restricted to those with κ = 0 is barely distinguishable by eye from
Figure 6(a). Figure 6(b) shows the direction and magnitude of the
wave number (κ , λ) of the fastest growing perturbations. These
perturbations have κ ≈ 0 and the wave number of maximum
growth rate λ ≈ 2.1 is consistent with the findings of HKRB and
(91). When X = 0.1 the fastest growing disturbances also have
κ ≈ 0 but the maximum growth rates are somewhat smaller (their
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Figure 5. The fastest growing instabilities (maximum |ωi|) for varying λ and κ for the original een scheme in height coordinates for the case with v1 = 0 and four
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Figure 7. The same as Figure 6, except that the results are for the AL scheme rather than the een scheme.

maximum being of order 0.9 for the range of Fu and Ru plotted in
Figure 6(a)).

Figure 7 is the same as Figure 6, except that it shows the
maximum growth rates for the AL scheme rather than the
een scheme. The plot of maximum growth rate for symmetric
disturbances only corresponding to Figure 7(a) is again not
shown, because they are barely distinguishable.

Figure 8 is the same as Figure 5, except that it was obtained using
v1 = u1 instead of v1 = 0. It is symmetric about the line κ = λ,
as one would expect from the symmetries of the problem. More
interesting is that it shows that the most unstable perturbations
are aligned with the grid rather than the background flow, the
alignment again being particularly strong when Fu 
 1. The
figures for this case, corresponding to Figure 6 for the een scheme
and Figure 7 for the AL scheme, are not shown because they are
barely distinguishable from those already presented, except that
when u1 = v1 there are two maxima, the second being obtained
from the single maximum present for v1 = 0 by reflection in
κ = λ.

Numerical solutions of (72) strongly suggest that all linear
disturbances to a flow in any direction are neutrally stable for the
original schemes in isopycnal coordinates. This result motivated
the analysis presented in section 4.5.

5. Numerical analyses of the SWE

To investigate the instability using the fully nonlinear shallow-
water equations, we implemented the een scheme (as described in
subsection 4.1) on a [0, 1] × [0, 1] doubly periodic plane with an
explicit fourth-order four-stage Runge–Kutta time-integration
scheme. The model was validated using initial conditions given
by u = sin(2πy), v = 0 and h chosen to balance with u. Second-
order accuracy in space and conservation of total energy and total
potential enstrophy within time truncation errors was achieved
on all four configurations tested: original and modified schemes,
with height and isopycnal coordinates.

One of the main outcomes of this study is that the developer
of a new numerical scheme should be able to test whether it will
suffer from Hollingsworth-type instabilities in a shallow-water
model context, rather than having to wait for a fully 3D version
of the scheme to be developed. The key point is to use uniformly
small equivalent depths, which slow down the gravity waves and
highlight nonlinear effects. A similar approach was discussed
by Gassmann (2011) in an investigation of the divergence of
computational modes on triangular grids. To help researchers
track the instability at the shallow-water development stage, we
propose two test cases.
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Figure 8. The same as Figure 5 except that instead of v1 = 0, v1 = u1.

5.1. Instabilities on a constant zonal flow

In this first test case, we used a constant initial zonal flow, a
flat bottom (zb = 0 in (31)) and an additional forcing term
equal to f0u1 on the right-hand side of the second part of
(30) to produce a balanced steady-state solution (parameters
u1 = 50	x, H = 2.5	y2, f0 = 10, g = 10, 	x = 	y = 1/64 and
time step 	t = 1/1024, which give Ru = 10 and Fu = 10). To
trigger the instability, we added a small perturbation to η at
the central point of the domain (we used +H/1000). The
modified scheme in height coordinates and both schemes in
isopycnal coordinates did not reveal any instabilities in the
tests performed. However, the height-coordinate model with
the original een scheme suffers from instabilities with a dominant
non-dimensional wave number λ of approximately 2π/3, which
grow in amplitude by a factor larger than 103 for every non-
dimensional time unit (see Figure 9). Taking the difference from
the initial state, E(t), to grow exponentially with time at a rate
given by ωif0 and fitting a straight line through the right panel of
Figure 9, we obtain an approximate value for ωi of 0.8, in very
good agreement with Figure 4(b).

5.2. Instabilities on a sinusoidally varying zonal flow

In this second test case, we set the zonal velocity u(x, y) =
u1 sin(2πy) and h(x, y) = h0, where both u1 and h0 are constants.
In order to create a steady-state solution, the bottom topography
(bathymetry) is set to

zb(x, y) = u1f0

2πg
cos(2πy).

Since the prognostic variables are functions only of y, the solution
is independent of x and the shallow-water equations reduce
to a 1D problem. The only initial source of error is due to the
non-cancellation of the nonlinear terms in the evolution equation
for v. For appropriate choices of parameters, the instability afflicts
the height coordinate model with the original een scheme, as
expected. We show in Figure 10 an example (parameters u1 = 10,
H = 0.1, f0 = 1/	x, g = 10, 	x = 	y = 1/64 and dt = 1/1024,
which gives Ru = 20 and Fu = 10) of the spectrum a few time
steps before the model blows up and also the evolution with
time of the maximum error in the layer thickness (η) (i.e.
the maximum difference from its original value). The initial
condition is dominated by a low wave number pattern (wave
number 2), but as time evolves, errors in higher wave numbers
appear and the instability is triggered. Once triggered, the growth
rates are very large. The estimated non-dimensional growth
rate for the parameters used in Figure 10 is ωi ≈ 2.0. This test
case has non-zero relative vorticity and growth rates that are
somewhat larger than those obtained using the formulae for a
constant flow on an f -plane. Figure 11 provides a snapshot of
the model fields at a time when instability is emerging in the h
and v fields.

6. Concluding summary and discussion

The factors that determine the linear stability of constant flows
on an f -plane to grid-scale disturbances have been clarified for
a number of discretizations of the vector-invariant momentum
equations which use regular rectangular grids in the horizontal.
The 3D stability problems obtained in height coordinates and
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Figure 10. Shallow-water model run with height coordinates, the original een scheme, an initially constant water depth and sinusoidal zonal velocity with a bottom
topography, which keeps the zonal flow in balance. (a) Spectrum of a y-slice of η, where the wave numbers were normalized to (0, π). (b) Evolution of Eη(t), the
maximum difference from the initial state of the layer depth η.

isopycnal coordinates have been confirmed to be soluble as a
linear combination of products of a vertical mode and a solution
of linearized shallow-water equations (SWEs), with the depth
H of the water determined by the eigenvalue of the vertical
mode. Two-dimensional SWEs that can be used to explore the
stability of new 3D dynamical cores written in height or isopycnal
coordinates have also been identified.

The depth H of the SWE associated with the modes of the
highest vertical wave number obtained using the Lorenz grid
decreases more rapidly as the number of depth levels increases
than is the case for solutions obtained using the Charney–Phillips
grid, for reasons related to the occurrence of the computational
mode on the Lorenz grid.

The 3 × 3 matrices that determine the linear stability of the een
(energy and enstrophy conserving) scheme (and the AL scheme),
both in their original and modified forms and in height and
isopycnal coordinates, have been constructed. It has been shown
that these stability problems for all the modified schemes can be
written as eigenvalue problems for Hermitian matrices and hence
that all the modified schemes are neutrally stable. The instabilities
obtained for the original schemes in height coordinates grow
most rapidly when the Froude number and grid-scale Rossby

numbers are large and the instability is nearly aligned with
the grid.

Simple expressions for the growth rates have been obtained
for instabilities aligned with the grid and for instabilities when
the Froude number or Rossby number is very small. Our
numerical investigations of the original schemes for isopycnal
coordinates found that they do not suffer from Hollingsworth
instabilities, in agreement with Arakawa (2000). The determinant
of the stability matrix for this case has been shown to reduce
to a simple factorizable form that has real solutions and
an explanation of this result has been proposed in terms of
solutions of the linearized SWEs with uniform potential vorticity
(Appendix F).

As shown by HKRB (see the discussion following (85) and
(86)), the instabilities are inertia–gravity waves that have been
destabilized by the discretization of the generalized Coriolis terms.
Consequently, and consistent with the discussion in Appendix B
of Gassmann (2013), one would not expect quasi-geostrophic
models (which do not represent inertia–gravity waves) to
suffer from them. Gassmann (2013) notes that the instabilities
occur preferentially in regions of high vertical shear, where the
stratification is relatively weak and the phase speeds of the internal
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modes are consequently relatively slow. The Froude number will
be highest in these regions, so, provided the Rossby number is high
enough, the instabilities will grow more rapidly in these regions.

Our results show that basic states that have no horizontal
temperature gradients (and associated vertical shear in the
horizontal velocity) can suffer from the Hollingsworth instability
when discretized using the een or AL schemes and height
coordinates. High vertical shear and high horizontal velocity
tend to occur near to each other, so in practice it will be difficult
to distinguish whether an instability seen in a model is associated
with one rather than the other, especially when other factors
(stratification, vertical grid spacing) are also implicated. The
instabilities can be obtained in height coordinates if a C–P vertical
grid is used with a large number of vertical levels, but will usually
grow faster on a Lorenz grid (with the same number of vertical
levels), because the equivalent depth of the most rapidly varying
modes is then much smaller and the Froude number much
larger. These instabilities do not occur for these simple states
discretized using isopycnal coordinates, but this does not rule
out the possibility that other instabilities owing their existence to
discretization issues rather than physical causes may occur in more
complex flows, for example on a β-plane or the sphere or, as found
by Arakawa and Moorthi (1988), on flows with vertical shear.

The origin of the instabilities in height coordinates might be
attributed to a loss of some form of momentum conservation,
as suggested by HKRB, or to the loss of the invariance of

the momentum equations to uniform motion of the frame of
reference. As suggested (but not proved) by HKRB and AL,
by smoothing the kinetic energy in the Bernoulli potential
using a stencil similar to that used in the generalized Coriolis
terms, one can obtain a modified scheme that is stable to all
disturbances. The instabilities for the original schemes grow
extremely rapidly when the Froude number and Rossby number
are very large, but sufficient cancellation of terms may be possible
using this approach on other (e.g. hexagonal) grids, as suggested
by Gassmann (2013).

It is hoped that the above results will help developers of
new dynamical schemes (e.g. on triangular, hexagonal and other
meshes) to test their schemes using appropriately configured
SWEs and to devise modified schemes that do not suffer from
Hollingsworth instabilities.
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Appendices

Appendix A: Notation

Tables A1–A3 summarize the notation used in the main body of
the article. The third column of the tables refers to the equations
where the symbols are first introduced.

Table A1. Table of Greek symbols for primary variables.

Greek – Lower case
δι a difference operator (50)
δI Kronecker delta function (59)
ζ vertical component of the

relative vorticity
(2)

η height of the free surface (9)
ι the grid index in any direction (50)
κ , λ wave numbers of perturbation

in x- and y- directions
(63)

μ coefficients from averaging in x (52)
ν coefficients from averaging in y (52)
ξ a coordinate in any direction (50)
� Doppler-shifted non-

dimensional frequency
(79), (84)

ρ density (4)
σ inverse of stratification in isopy-

cnal model
(19)

ψ any function of ξ (50)
ω non-dimensional frequency of

perturbation
(63)

Greek – Upper case

	 the difference between neigh-
bouring grid points

(50)


 a non-dimensional parameter
for vertical modes

(41)

� the Bernoulli function (3)

Appendix B: Separation of variables in height model

B1. Basic state and perturbed equations

Assuming the basic state of a stably stratified density field ρ0(z)
as described in section 2.1.2, we have that

dp0

dz
= −ρ0g, (B1)

and

p1 = f ρ00(v1x − u1y). (B2)

Denoting the perturbations by primed quantities and
neglecting products of perturbations, the horizontal momentum
equations for the perturbations are given by

∂u′

∂t
− f0v′ − ζ ′v1 = −∂�′

∂x
+ AmDmu′, (B3)

∂v′

∂t
+ f0u′ + ζ ′u1 = −∂�′

∂y
+ AmDmv′, (B4)

where

ζ ′ = ∂v′

∂x
− ∂u′

∂y
, �′ = p′

ρ00
+ (u1u′ + v1v′). (B5)

Table A2. Table of Roman symbols for primary variables.

Roman – Lower case

a a parameter (86)
b buoyancy (19)
c speed c2 = gH
cκ , cλ cosines of wave numbers (64)
f the Coriolis parameter (2)
g gravity (4)
h function of z related to w or z (14), (B10)
m, n constants related to equivalent depths (42), (43)
p pressure (3)
q potential vorticity (22)
sκ , sλ sines of wave numbers (64)
t time (5)
u, v, w velocity components (5)
x, y horizontal coordinates (2)
z height coordinate (4)

Roman – Upper case

Am coefficient of viscosity (5)
DM determinant (80)
D total derivative (as in D/Dt) (6)
Dm diffusive operator (5)
Eij matrix element for een scheme (73)
Fu, Fv Froude numbers (69)
H the total depth (or equivalent depth) (12)
H a Hermitian matrix (74)
I the identity matrix (74)
J a non-dimensional quantity (86)
Ke horizontal kinetic energy (1)
K the number of vertical levels (37)
M Montgomery potential (20)
N − 1 the number of zeros in the vertical (45)
P, Q coefficients (81)
Rc twice the ratio of the Rossby radius and

grid spacing
(70)

Ru, Rv Rossby numbers (71)
S a non-dimensional quantity (96)
Tu, Tv modified Rossby numbers (75)
X grid aspect ratio (70)
W a constant in normal mode solution (44)
Z vertical component of the total vorticity (2)

Hydrostatic balance for the perturbations is

∂p′

∂z
= −ρ ′g, (B6)

the incompressibility condition is

∂u′

∂x
+ ∂v′

∂y
+ ∂w′

∂z
= 0, (B7)

and the density perturbations satisfy

∂ρ ′

∂t
+ u1

∂ρ ′

∂x
+ v1

∂ρ ′

∂y
+ w′ dρe

dz
= 0, (B8)

because the heating by dissipation is zero in (B8) when the basic
state has no shear. Finally, the boundary conditions are

w′ = 0, z = 0, −H0. (B9)

In summary, the above set has five unknowns u′, v′, w′, ρ ′
and p′ that are constrained by five equations and the boundary
conditions (B9).
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Table A3. Table of subscripts and superscripts.

Subscripts

b the (height of the) bottom (31)
e equivalent (as in He) (12)
i imaginary part (87)
i, j x- and y coordinate indices (50)
k the vertical index (34)
x, y horizontal coordinates (50), (51)
E een scheme (52)
F modified een scheme (53)
I isopycnal (59)
M matrix (80)
00 constant density (3)
0 the stably stratified component of the

basic state
(B1)

1 the constant velocity component of the
basic state

(B2)

Superscripts

μ averaging in x (52)
ν averaging in y (52)
′ a perturbation (9), (B3)
∗ transports through faces of cells (22), (33)
φ̂ a function of the vertical coordinate (9)
φ̃ a function of x, y and t (9)
φ an average of φ

B2. Separable solutions

Comparing the five equations just summarized with those in
section 6.11 of Gill (1982), one sees that they enjoy separable
solutions of the same form. Departing slightly from the order
of Gill’s derivation, we assume that the variations in u′, v′ and
p′ are given by (9). Then gρ00�

′ = p̂(z)�̃(x, y, t), where �̃ is
given by (11) and the horizontal momentum equations reduce
to (10).

Following Gill, we let

ρ ′ = ρ̂(z)η̃, w′ = ĥ(z)w̃(x, y, t). (B10)

Substituting the third part of (9) and first part of (B10) into (B6),
we obtain (13). Substituting (B10) into (B8) and introducing the
separation constant He, we obtain (14) and

Hew̃ = ∂η̃

∂t
+ u1

∂η̃

∂y
+ v1

∂η̃

∂y
. (B11)

Substituting (9) and the second part of (B10) into (B7), we can
choose to set (15) and obtain(

∂ ũ

∂x
+ ∂ ṽ

∂y

)
+ w̃ = 0. (B12)

Eliminating w̃ from (B12) using (B11), we obtain (12).
Hence the solutions dependent on x, y and t are governed by

the shallow-water equations (10) and (12). The vertical structure
functions ĥ(z), ρ̂(z) and p̂(z) are determined by (13), (14) and
(15) and the boundary conditions (16) obtained from (B9) and
(B10).

Appendix C: Separation of variables in isopycnal model

C1. Basic state and perturbed equations

The assumed basic state is the same as that in the previous section.
Here, we just adjust the notation. So the stably stratified state is
expressed as a profile z0(b) that is in hydrostatic balance:

dM0

db
= −z0. (C1)

The horizontal velocity field (u1, v1) is again in geostrophic
balance with a pressure field p1, so

M = M0(b) + M1, M1 = f (v1x − u1y). (C2)

The relative vorticity is again zero and the total vorticity, Z0 = f0,
is independent of position.

The horizontal momentum equations for the perturbations are
given by

∂u′

∂t
− f0v′ − ζ ′v1 − f0v1

σ0

(
σ

′(v) − σ
′(q)

)
= −∂�′

∂x
, (C3)

∂v′

∂t
+ f0u′ + ζ ′u1 + f0u1

σ0

(
σ

′(u) − σ
′(q)

)
= −∂�′

∂y
, (C4)

where ζ ′ is given by the first part of (B5) and

�′ = M′ + (u1u′ + v1v′). (C5)

From (23), hydrostatic balance for the perturbations is given by

∂M′

∂b
= −z′. (C6)

Continuity of mass, (24), gives

∂σ ′

∂t
+ u1

∂σ ′

∂x
+ v1

∂σ ′

∂y
= −σ0

(
∂u′

∂x
+ ∂v′

∂y

)
, (C7)

and the boundary conditions, (25), become

∂z′

∂t
+ u1

∂z′

∂x
+ v1

∂z′

∂y
= 0, b = b(0), b(−H). (C8)

In summary, the above set has four unknowns, u′, v′, M′ and z′,
that are constrained by four equations and the above boundary
conditions.

C2. Separable solutions

Let

u′ = M̂(b)ũ(x, y, t), v′ = M̂(b)ṽ(x, y, t),

M′ = M̂(b)gη̃(x, y, t).
(C9)

Then

�′ = M̂(b)�̃(x, y, t), �̃(x, y, t) = gη̃ + u1ũ + v1ṽ (C10)

and the terms in (C3) and (C4) other than those involving σ ′
reduce to (26). These additional terms will be considered shortly.

Letting

z′ = ĥ(b)η̃ (C11)

and substituting the third part of (C9) and (C11) into (C6) gives
(27). Also substituting (C9) and (C11) into (C7) and introducing
the separation constant He, one obtains (12) and (28).

The vertical structure of the additional terms in the horizontal
momentum equations can now be considered. Using (19) and
(28), one sees that their vertical structure is given by

σ ′

σ0
= η̃

σ0

dĥ

db
= η̃M̂

He
. (C12)

Hence these additional terms have the same vertical structure as
the other terms in the momentum equations and (C3) and (C4)
reduce to (26).

Finally, the boundary conditions obtained from (C8) and (C11)
reduce to (29).
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Appendix D: The een scheme horizontal discretization

The een scheme calculates qv∗ at the central u point in Figure
D1, located at (i, j + 1/2), as the sum of products of quantities
calculated at the surrounding v points (A, B, C and D in the
figure):

(qv∗)i,j+1/2 = αi,j+1/2v∗
i+1/2,j+1 + βi,j+1/2v∗

i−1/2,j+1

+ γi,j+1/2v∗
i+1/2,j + δi,j+1/2v∗

i−1/2,j.
(D1)

The coefficient at each of these velocity points is calculated (see
AL equation (4.21)) using values of q at three nearby q points:

αi,j+1/2 = 1

12
[qi+1,j+1 + qi,j+1 + qi,j],

βi,j+1/2 = 1

12
[qi−1,j+1 + qi,j+1 + qi,j],

γi,j+1/2 = 1

12
[qi−1,j + qi,j + qi,j+1],

δi,j+1/2 = 1

12
[qi+1,j + qi,j + qi,j+1].

(D2)

At point A, the first two of these q points used to calculate α are
those on either side of point A (at points 1 and 2). The sum of
these two contributions at A is hence given by qxv∗/6 and the
sum of the corresponding first two contributions at A, B, C and
D is given by

C1 = 2

3
(qxv∗)

xy
. (D3)

The other contribution at point A is calculated using the value of
q at point 5 in Figure D1(a). Point 5 is on the opposite side of
the u point from point 2. The remaining contribution at point B
also involves q at point 5. So the sum of these two contributions
is equal to 1/6 times q at point 5 times v∗x

at point 2. The final
remaining contributions from points C and D are given by 1/6
times q at point 2 times v∗x

at point 5. Denoting the ‘geometric
product’ for any quantities φ and ψ by

Gy(φ, ψ)i,j+1/2 ≡ 1

2

(
φi,jψi,j+1 + φi,j+1ψi,j

)
, (D4)

Figure D1. A depiction of the variables used by the een scheme in the calculation
of qv∗ at the u point in the centre of the figure. The een scheme uses the values of
v∗ at points A–D and the values of q at points 1–6 at this u point.

one then sees that the een scheme discretizes qv∗ by

(qv∗)E = 2

3
(qxv∗)

xy + 1

3
Gy(q, v∗x

). (D5)

By direct calculation of terms, one can establish that

Gy(a, b)j+1/2 = 2ayb
y − ab

y
. (D6)

Substituting (D6) into (D5), one obtains the first part of (57).
The een scheme calculates qu∗ for the u point stored at

(i + 1/2, j) using

(qu∗)i+1/2,j =γi+1,j+1/2u∗
i+1,j+1/2 + δi,j+1/2u∗

i,j+1/2

+αi,j−1/2u∗
i,j−1/2 + βi+1,j−1/2u∗

i+1,j−1/2.
(D7)

A similar argument to that given above establishes the second
part of (57).

Appendix E: Stability analysis for the AL scheme

As for the een scheme, the original and modified AL schemes can
be concisely written by defining the averaging operators

ψ
μA ≡ ψ

xx
, ψ

νA ≡ ψ
yy

, (E1)

where the ‘A’ subscript indicates that the expression is relevant to
the AL scheme, and the associated ‘modified’ averaging operators

ψ
μB ≡ ψ

μA , ψ
νB ≡ ψ

νA for modified scheme,

ψ
μB ≡ ψ , ψ

νB ≡ ψ for original scheme.
(E2)

Similarly to (54), the AL scheme for isopycnal coordinate
models sets

η(q) = ηxy, η(v) = ηyμB , η(u) = ηxνB , (E3)

and discretizes the continuity equation as

∂η

∂t
+ δx

(
ηxνB u

) + δy
(
ηyμB v

) = 0. (E4)

It then discretizes the terms qv∗ and qu∗ in (30) using

(qv∗)A =(qxyv∗y
)

x + 1

48
δi

[(
δiδjq

) (
δjv

∗)]
+ δi

(
εu∗x) + εδiu∗x

,
(E5)

(qu∗)A =(qxyu∗x
)

y + 1

48
δj

[(
δiδjq

) (
δiu

∗)]
+ δj

(
φv∗y) + φδjv∗y

,
(E6)

in which the fourth part of (50) defines δi and δj and

ε = 1

12
δjq

x, φ = 1

12
δiq

y. (E7)

Ketefian and Jacobson (2009) note that the AL scheme can be
expressed in the form given by (E5) and (E6) and these equations
are derived in detail in the appendices of Ketefian (2006). For
height coordinates, the same expressions apply, with q replaced
by Z, u∗ by u and v∗ by v.

The original version of the AL scheme takes Ke to be discretized
in the same way as in the original een scheme. AL propose a
modified form for the kinetic energy in their equation (6.1). A
form more similar to that used above for the een scheme, the

c© 2016 Royal Meteorological Society and Crown Copyright, Met Office.
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first term of which gives the same gradients of KA as the form
proposed by AL, is given by

2KA = u2
xνB + v2

yμB − 1

12
δiδj

(
uyyvxx

)
. (E8)

The last term in (E8) is only used in the modified scheme. It has
been introduced here to cancel contributions arising from the
Coriolis terms proportional to ε and φ in (E5) and (E6).

Using the above discretizations, one finds that in place of (61)
and (62) one obtains

∂u′

∂t
− f0v′xy + gδxη

′ + u1δxu′xνB + v1δyu′yμA

− 1

12

(
u1δyδiδju′μA + δBv1δxδiδju′νA

)
+ v1δx

(
v′yμB − v′yμA

)
+ (1 − δB)

12
u1δxδiδjv′μA

− δI
f0v1

H

(
η′μB − η′μA

)xyy

= 0,

(E9)

∂v′

∂t
+ f0u′xy + gδyη

′ + u1δxv′xνA + v1δyv′yμB

− 1

12

(
δBu1δyδiδjv′μA + v1δxδiδjv′νA

)
+ u1δy

(
u′xνB − u′xνA

)
+ (1 − δB)

12
v1δyδiδju′νA

+ δI
f0u1

H

(
η′νB − η′νA

)xxy

= 0,

(E10)

∂η′

∂t
+ u1δxη′xνB + v1δyη′yμB + H

(
δxu′ + δyv′) = 0, (E11)

where

δB =
{

0 for the original scheme,
1 for the modified scheme.

}
(E12)

The first lines of (E9) and (E10) consist of terms corresponding
to those in the original equations. For the modified schemes, the
other terms are either zero or contribute only to diagonal terms
of the stability matrix, so the stability matrix is Hermitian, as it
was for the een scheme.

Appendix F: An interpretation of the stability of the original
scheme in isopycnal coordinates

Some insight into why the rather asymmetric matrix obtained for
the original schemes in isopycnal coordinates (see (77)) has such
simple solutions can be obtained by considering the potential
vorticity of the flow and its perturbations. AL show that both
the een and AL schemes will not change q in a flow that has
uniform q. So one might anticipate that only perturbations with
potential vorticity identically zero will be able to grow and that
this will constrain the instabilities. The calculations presented
below support this interpretation.

The linearized form of the potential vorticity (22) is given by

q′ = ζ ′

H
− η′xy f0

H2
, (F1)

and hence, for wave-like solutions,

qE = 2isκ
H	x

vE − 2isλ
H	y

uE − cκ cλf0

cH

( cηE

H

)
, (F2)

where qE is defined by analogy with (63). Using (F2), one sees
that the first two rows of (77) can be written as

�uE − icκ cλvE − Rc
sκ
X

cηE

H
+ i

2
TvH	yqE = 0,

icκ cλuE + �vE − Rcsλ
cηE

H
− i

2
TuH	xqE = 0.

(F3)

In other words, the asymmetric terms in the matrix in (77)
are proportional to qE. For perturbations with qE = 0, (77)
consequently simplifies to[

� −icκ cλ − Rcsκ
X

icκ cλ � −Rcsλ
− Rc sκ

X −Rcsλ �

] [
uE
vE
cηE
H

]
= 0. (F4)

Hence � is the eigenvalue of a Hermitian matrix and is real-
valued. The solutions with qE = 0 are therefore neutrally stable.
Moreover, because qE = 0 implies a constraint relating uE, vE and
ηE, the system (F4) has a redundancy, which allows us to drop
the third row of equation (F4) and use the constraint to eliminate
ηE from the first two rows of (F4). This reduces (F4) to a 2 × 2
matrix equation:[

� + A sκ sλ
	x	y −icκ cλ − A s2

κ

	x2

icκ cλ + A
s2
λ

	y2 � − A sκ sλ
	x	y

] [
uE
vE

]
= 0, (F5)

where A = 4ic2/(cκ cλf 2
0 ). Setting the determinant to zero gives

the numerical inertia–gravity wave dispersion relation,

� 2 = (cκ cλ)
2 + 4c2

f 2
0

(
s2
κ

	x2
+ s2

λ

	y2

)
, (F6)

in agreement with the roots � 2 = Q2 given by the second part of
(81) and (82).

The dispersion relation for perturbations in which qE is
non-zero can be determined by using (F3) to form a vorticity
equation. Multiplying the second part of (F3) by 2isκ(H	x)−1

and subtracting 2isλ(H	y)−1 times the first part of (F3), one
obtains

�

(
2isκ

H	x
vE − 2isλ

H	y
uE

)
−2cκ cλ

H

(
sκ
	x

uE + sλ
	y

vE

)
+ (Tusκ + Tvsλ) qE = 0.

(F7)

Subtracting cκ cλf0(cH)−1 times the last row of (77), one finds that

(� + Tusκ + Tvsλ) qE = 0. (F8)

The factor in parentheses in (F8) can vanish only if � is real,
confirming that wave-like solutions with non-zero potential
vorticity are neutrally stable. Note that this factor agrees with
the factor � + P in (82).
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