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HKRB. Secondly, a number of researchers such @lsoMiet al. assumptions such as the shallow-atmosphere approximation) and
(2002), Thuburn (2008), Ringlest al.(2010), Skamarockt al. the equivalent depth of the vertical modes is independent of their
(2012) and Gassmann (2013) are seeking to develop atmospHegiguency if the motions are taken to be hydrostatic (Daley, 1988).
models using meshes with triangular, hexagonal or pentagomhkse points also hold for the vertically discrete equations studied
elements employing the vector-invariant momentum equationgy Thuburn and Woollings (2005). We would therefore expect
Gassmann (2013) discusses the Hollingsworth instability fronoar analysis to be relevant to atmosphere models as well as ocean
historical perspective and concludes, in agreement with HKRBodels.
that the instability would be more pronounced the less stable The linear stability analysis of the states described in this article
the stratibcation. She also proposes a method for choosing ithenost safely approached by writing out the full nonlinear
formulation of the kinetic energy on regular hexagonal grids, geverning equations and the description of the basic state
as to minimize the size of the term in the momentum equatiorig discretized form, then deriving from these the linearized
that leads to instabilities. Skamaroek al. (2012) show that equations and Pnally the separable solutions. This approach
their scheme is prone to the Hollingsworth instability and udé unnecessarily lengthy and, with some care, it is possible to
Gassmann (2013)Os formulation of the kinetic energy to suppl@&arize the equations and derive the separable solutions using the
it. continuous equations and then discretize. Section 2 presents the
As noted above, HKRB provided a good initial theoreticB#ll nonlinear governing equations and the linearized equations
analysis of the instability, but their derivation of the dispersiol®' their separable solutions, brstly fecoordinates and secondly
relationship for the instability included the neglect of a ternfor isopycnal coordinates. The derivations of these equations are
which was only justibed by a rather ad hoc argument. Algven in Appendices B and C. The linearized equations for the
some aspects of the occurrence of the instability have not b&8Hitions that vary in time and in the horizontal are then derived
clariped since the work of HKRB. Arakaetal.(1992) argue by linearizing two sets of SWEs. Thg only dlf_fer_ence be_tween the
that the properties of isentropic coordinates Odo not allow rod¥P Sets of SWEs is that the generalized Coriolis terms in the one
for® the Hollingsworth instabilities. Arakawa (2000) notes that fi§#ting to isopycnal coordinates are the product of the potential
family of consistent energy- and enstrophy-conserving schen@gicity, g, and a depth-weighted velocity , whilst those for
(including the een and AL schemes) that AL derived gener ght coordinates are the product of the vertical component of

behave well for the SWES. He suggests that the HoIIingswdHﬁ vorticjty,z, and the velocity. It transpires that this difference
instabilities arise in pressure or sigma coordinates Oat least crucial |n;pqrtanc?1. cal discretization of th des i
part® because of the formal application of the schemes in thesieCtion 3 derives the vertical discretization of the modes in
coordinates, in which the layer deptis replaced by the thicknesdSCPYcnal and height coordinates. The vertical modes with the
of model layers despite the fact that the model levels are hestvertical wave numbers have small equivalentdepths, asone

material surfaces. This has left developers of new dynamical ¢ ggld expectfrom the vertical modes for the continuous problem.

uncertain how to test their schemes using the SWEs. Thi t shown that on the Lorenz grid the smallest equivalent depths

very inconvenient for them and a better understanding of tH&IUCe as the number of vertical levety {ncreases at a rate that

5 .
occurrence of instabilities in easily accessible variants of the S\'{?é‘sfacmlr QK flaster thaﬂ that of the co?ur?uous mode§ anfl that
is highly desirable. IS result is related to the presence of the computational mode

This article has two main aims. The brst is to conbrm th pthe Lprenz grid. The resulting re_ductlon inthe phas_e speed of
: . ! - . . gravity waveg) on the Lorenz grid for these modes increases
an idealized 3D basic state consisting of a uniform horizon %F.

Row (independent ok, y and z) in a stably stratiPed RRuid on in:tlf;bljlri?igge number ,) and exacerbates the Hollingsworth

anf-plane can suffer from Hollingsworth instabilities when the Section 4 brst describes the discretization of the SWEs using the

original een and AL schemes are used to discretize the equat@él’?scheme and derives the discrete form of the linearized SWEs

c_)f mot_ion. Because the isopycnals in t_he basic state are I_Sat,t >Hoth height and isopycnal coordinates. It then reduces the
linear instabilities can be analyzed using separable solutions

. . . lysis of the stability of the scheme to an eigenvalue problem
are the product of vertically varying normal modes and SOIUt'Oriﬁ\/olving 3x 3 matrices written in a non-dimensional form and

to linearized SWEs. The resulting linearized SWEs also deterr‘r,yﬂgws that. for the modibed form of the een scheme. the matrices
the stability of an appropriately balanced layer of shallow waige e rmitian and hence the scheme is stable. Section 4 also shows
moving with the same velocity(, v;) on anf-plane. This result y,,; 5 jinear perturbations are neutrally stable for the original een
will allow the potential for _Holllngsworth |_nstab|I|t|es in 3D_scheme in isopycnal coordinates. Appendix E shows that the same
problems to be explored with new numerical schemes, usigghciusions hold for the AL scheme and Appendix F provides an
appropriately speciped 2D problems. _ _ . interpretation of the stability of the schemes in isopycnal coordi-
_The second aim is to derive the matrices determining thgyies Section 4 ends by illustrating the dependence on the Froude
dispersion relationships for these linearized SWEs and to analyzg Rossby numbers of the instabilities with the aid of analytical
them in some detail. Itis shown that the modibcations proposed|cylations for some special cases and numerical evaluations.
by HKRB and AL to the een and AL schemes remove spurioussection 5 illustrates the nature of the instabilities further using
off-diagonal terms (non-cancelling advection terms) from thf?\tegrations of the SWEs and proposes test cases with doubly
stability matrix and recover its Hermitian form. This makes thgeriodic Cartesian domains that could be used to test whether
schemes stable for any linear disturbance to the idealized bagif numerical schemes suffer from these instabilities. Section 6
states. The original een and AL schemes in isopycnal coording#@¥ides a concluding summary and discussion and the tables in

are also shown to be neutrally stable to all perturbationgppendix A provide a summary of the symbols used in the main
Numerical results and an expression for the instabilities in heighbdy of the article.

coordinates suggest that the most unstable perturbations are fairly

closely aligned with the grid. _ _ 2. Model formulation and separation of variables
Itis more natural to consider the simple 3D basic state described

above in an oceanic context, where variations in the surfagg, governing equations will be taken to be a form of the
height of the ocean can easily occur and affect the pressurég @fostatic, incompressible, adiabatic, Boussinesq equations
all depths, than in an atmospheric context. For this reason, Wfitaple for a liquid. They will be written in Cartesian coordinates
analysis is presented using the Boussinesq equations, whichygfhe Coriolis parametdwill be taken to have a constant value

appropriate for the ocean (rather than the equations of stafe The horizontal kinetic energy per unit mass will be denoted by
for a perfect gas, appropriate for the atmosphere). The normal

modes of the continuous equations for an atmosphere on a K. = }(u2+ V) )
sphere are also separable (provided one makes use of traditional €2 '
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Vector-Invariant Momentum Equation Instabilities 565

the vertical component of the relative and total vorticities will be These linearized equations enjoy separable solutions. The
denoted by andZ respectively, with derivation is detailed in Appendix B, which is a straightforward
generalization of section 6.11 of Gill (1982). Denoting the small

-V S u 7= fi+ @) amplitude perturbations by primed variables, functions varying
X y’ or only in the horizontal and time by tildes and functions varying
only in the vertical by hats, the horizontal velocity and pressure
and oo will denote a constant density. pertubations are expressed in the following forms:
2.1. Formulation in height coordinates u = u(x, y,t)@, v = v(x,y,t)@,
g oo g oo 9
2.1.1. Governing equations p= (Xy)2).
In height coordinates, the Bernoulli function is given by The solutions dependent only ogy andt are determined by
the linearized horizontal momentum equations,
= pl oo+ Ke, (3
u - .
wherepis the pressure Peld, which is in hydrostatic balance with 1 SfvS v =S ™ + AmDmu,
the density and gravityg, v (10)
o —t+f0u+ Ulzé—y+AmDmV,
—=S g (4)
z
where
The horizontal momentum equations in vector-invariant form
are then (X, y,t) = g + uu+ vy, (112)
. . and a continuity equation
—l:SZv+W—lZJ:S—X+AmDmu, Y€
(5) U v L
7V+ZU+W7\Z/:§7y+AmDmV, t+U1X+Vly+He X+ y —O, (12)

. . . . . ) . hereHe is the equivalent depth (a separation constant). This
wherew is the vertical velocityAn, is a coefpcient of viscosity an ystem is the linearized form of a shallow-water system (see
Dm is a diffusive operator such asj or 2/ z2. The viscosity below).

will be set to zero, except in this section and section 4.6, Where, o yertical structure of the perturbed variables is given by
the stabilizing effect of viscous terms on perturbations with small

Froude numbers is discussed. . .
The density, , will be taken to be conserved following the e Sg4 (13)
motion, . dox
He6=38 — %R, (14)
D D dz
ot - % bt t+ux+vy+wz' © p _dR

—— = —, 15
. . . goo Gz (13)
and the Row will be assumed to be incompressible,

where dz) and F?(z) describe the vertical variation of the

R L 0. (7) perturbationOs density and vertical velocity belds. The boundary
X y z conditions are given by
The domain will be taken to be unbounded inandy and R=0, z=0,8H. (16)

to have a Rat boundary at= S H where the vertical velocity is
zero. Attention will be focused solely on the baroclinic mode®,2. Formulation in isopycnal coordinates
for which, to a very good approximation, the upper boundary at
z = 0 also has zero normal velocity, so 2.2.1. Governing equations
w=0, z=0SH. (8)  Following section 3.9.1 of Vallis (2006), we write the density and

. . . r re belds in the form
The barotropic mode satisbes the shallow-water equations (tB gosure pe ds eto

very good approximation) and is not considered further in this = 0+ , p=p@d+ p (17)
section. g

. o . (Tpo =S oo (18)
2.1.2. Separable solutions to the linearized equations z

) ) _ The buoyancy and an inverse measure of the stratibcation for this
The evolution of very small amplitude perturbations can b&stem are then given by

determined by linearizing the hydrostatic Boussinesq equations

about a basic state. b= & g _ 2z
The assumed basic state consists of a stably stratiPed density "7 o0 T b

Peld o(2), which is in hydrostatic balance with the pressure peld

po(2), and a horizontal velocity beld with componenis= u; If the isopycnal coordinates were used in a layer modepuld

andv = vy, which does not depend ox y, z or t. This velocity represent the thickness of the layers. The Montgomery potential

Peld is in geostrophic balance with a pressure IpeJdvhich and Bernoulli function are given by

is independent ofz, and the vertical velocityg is zero. The

(19)

non-zero velocity in the basic state and the nonlinearities in the M = P S bz, =M+ Ke. (20)
equations of motions give the potential for instabilities. 00
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566 M. J. Belét al.

The horizontal momentum equations are then given by 2.3. Formulation for shallow water

A Sqv =5 —, The shallow-water equations, for a layer of constant density in
t X (21) which the bottom of the uid is at heiglat and the depth of the
AN qu =8 —, Buid layer is , are given by
t y
where #SZVZéT’
q=2/ @, u= Wy v = Wy (22) v .
_ o _ —+2Zu=$ —, (30)
Here g is the potential vorticityu andv are proportional to t y
the Ruxes within the layers (i.e. the velocities multiplied by the
thicknesses of the layers) and the superscrigts((1) and (v) =* —(u+ T/( v) =0,
indicate the location at which is calculated. They have been
included at this stage so that the discretized form of the lineari ; T
equations can be inferred easily in section 4.1. As usual, the p;\r&i%?re the Bernoulli potentialis given by
derivatives in the momentum equations are evaluated titbld _
= + )t Ke (31)

constant and the diapycnal velocities have been set to zero.

The hydrostatic equation then takes the form ) ) ) )
A steady basic state with a constant horizontal velocity peld

M _ s (23) (ug,v1) and Ruid depthHe, which is independent of position, is
b ' obtained provided the bathymetrg,, is given by
and, for an ideal Boussinesq 3uid, the continuity equation is given .
by 9% = gzo + fo(vix S uy), (32)
b ___ tu—ty—=8 (Y4 ¥ ’ (24) whereby is a constant. 5 §
Dt t X y X Writingu = uSu;=u,v=vSvi=vand = SHg=
. . . R . . and linearizing (30) about this basic state, one obtains the
::norvlvsr;;:r?t all partial derivatives are again evaluated Vaitheld equations (10) and (12) derived for height coordinates.
Denoting the buoyancy atz=0 and z= SH by If one debnes
b(z= 0)= b(0) and b(z=S H) = b(SH), respectively, the z
boundary conditions of no normal Row are given by g==, u = Wy v = WOy (33)
Dz _ o, b= b(0),b(SH 25
Dt = 0(0), b(SH). (25) replace€vbyqv andZubyqu in (30) and linearizes about the

same basic state, one obtains the equations (26) and (12) derived
for isopycnal coordinates.

. . . .. Asecond way to obtain a steady basic state with a Ruid depth
Assuming an analogous ba§|c state tothatofthe he'ghtcoord'n%%%pendent of)|/oosition is to use Z pctitious force added to th\)e
model, the separable solutions that depend onlykpyandt, in

a continuousnodel satisfv equations of the same form as thomomentum equations. One of the numerical test cases in section 5
inuou Al fy equatl . S G&es a bctitious force and the other uses a sloping bathymetry to
for the height coordinate. However, in mumericalisopycnal

model, extra terms arise because the layer thicknes¥@s(22) balance the zonal ow.
are calculated at different points. Appendix C shows that t
separable solutions depending »yy andt satisfy the following
horizontal momentum equations:

2.2.2. Separable solutions to the linearized equations

e . . .
g. Analysis of the discrete vertical modes

3.1. Discretization in height coordinates

u - o - foV]_ V) & &
Tt SfvS wviS Hie ( v (q)) =S X! The natural discretization in the vertical of the level model is not
v oty (26) clear-cut and it is well known that there are a number of options;
— 4+ fou+ U+ —— ( CRS (q)) =8 . see Tokioka (1978), Thuburn and Woollings (2005) and Girard
t He y et al.(2014). Most ocean models use the Lorenz grid illustrated

In the horizontally discretized form of the Prst part of equatiof? Figure 1(a), in whichu, v, pand  are stored on full levels and

(26) the terms ™ and (@ orginate from different points. They w (and thereforef) is stored at half-levels. The vertical structure

consequently represent different averagesawfd their difference equations (13)D (15) are then discretized as

is non-zero. The separable solutions also satisfy the continuity

:enqoudaet:on (12), which is the same as that for the height coordinate Be1SpP=9S g (Ger+ 6)( Do (34)
Appendix C also shows that the vertical structure of the

separable solutions is given by

1 .« 0ol /s -
g%:éﬁ, (27) Heq_saé(ﬁi&]ﬂ"' ﬁi(S]Jz), (35)
Hegib?: o, (28) P k=9 oo (F%ﬂzé I%yz), (36)

whereR describes the vertical variation in the heightof the and the boundary conditions (16) as
perturbations to the isopycnals artd, is again the separation

constant. The boundary conditions are given by Byo= Rryz= 0. (37)
R=0, b= b(0),b(SH). (29)
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Vector-Invariant Momentum Equation Instabilities 567

The last identity above follows from the second part of (19).
v K+ — The solutions of (41) are given by

P RCWK}, W=+ im_ (44)

P T [P uyv,M,c W Iie§ on t_he unit circle whevis_l 1 gnd hence can also
be written in the formW = expi , where is a real argument.
Wkt T % The solutions written in this form that also satisfy the boundary
D ko e u,v,M,o  conditions, (40) for isopycnal coordinates or (37) for height
W—————————— -y ————————— 2 coordinates, are given by
D5 PoUy Y === mmmmmm e s u,v,M,o . N
Revz= Csin( k), = — -, (48)
PP,V e 1 e u,v,M,s WhereN isanintegerand1 N K_._
W Y 2 The solution (45) withN = K hasKy. 1y, = 0 for all integersk
(a) height (Lorenz ) 2 (b) Isopycnal (C-P) within the domain, so its vertical velocities are zero. From (36), it

also hag = O for all points in the domain and hence, by (9), zero
Figure 1.The arrangement of variables using (a) height coordinates and (Rbrizontal velocities. WheHe = 0, (35) does not constraiand
isopycnal coordinates. In both gridsandv are held at full levels and the upper(34) is satisped provided = IS & 1 at all points in the domain.
and lower boundaries are at half-levels. - -
Hence (45) withN = K corresponds to the computational mode
on the Lorenz grid.
3.2. Discretization in isopycnal coordinates The solutions withN = K S 1 are the ones with the smallest
equivalent depths that can give rise to Hollingsworth instabilities.
The natural discretization in the vertical of the isopycnal modelWe now calculate their equivalent depths for the realistic case
to take the horizontal boundaries to lie at half levels and to stonéth K 1. For these modes,
u, vandM at full levels and (and thereforeR) at half levels, as
in Figure 1(b). Denoting the levels with a subscripthe level

. i
number increasing with height, (27) and (28) are discretized as W S 1+ (46)
9(Mis 1S M) = S R w2 Dir vz, (38) Equating the second part of (44) and (46), one infers that
He(Rrv2S Bev2) = oMi( b (39) .
S N ) 1S 2 — 47
For a grid withK levels, the boundary conditions (29) are simply K
Byo= Besyo= 0. (40) As isclosetcS1, onecantake$ 2= (1S )1+ )

2(1+ )andinfer from (47) that
One sees that (36) and (37) correspond to (39) and (40).

Equations (34) and (35), when combined, correspond to (38), but 5 2

in a form that involves more vertical averaging. The discretization S 1+ K (48)

used above for the isopycnal model corresponds to that for the

best category in Thuburn and Woollings (2005), obtained usingsing (42) and (43) in (48), one Pnds that, for height and

a Charney B Phillips grid with potential temperature evaluatedigpycnal coordinates respectively

half-levels . ’
1 2

n? &

3.3. Discretized vertical modes — and m’=21S ) 4 (49)

The impact of the vertical discretization on the equivalent deptiirom the second parts of equations (42) and (43), the equivalent
He, which is the separation constant and the eigenvalue for thgpth, H,, is proportional to mS2 and also tonS2. For the
normal modes in the vertical, can be illustrated for the cagharneyd Phillips grid (and the continuous equatiorid), is
of uniform stratibcation and grid spacing. Then the verticghyersely proportional to the square of the vertical wave number.
structure equations for height coordinates (34)D (36) reduce (g @ne choosegso thatH, = 1000 m for the brst baroclinic mode
single equation: then, forthe largest vertical wave number onthe Charney D Phillips
" 5o g —_— grid, He = 1000 K2 m. For a grid with 100 vertical levels, this
Bew2S 2 Bevzt Beyz=0, (41) givesHe = 0.1 m for the most rapidly varying mode. For height
with coordinates using the Lorenz grid, (49) shows thhatfor the
most rapidly varying mode is a factor ¢f 2 K52 smaller, which

4S nz, means that it is 5x 10>*m in the above example.

4+ n? (42) The solutions above are consistent with those derived by
, =« gde 2 zb Tokioka (1978). It is, however, clearer from the analysis above
n® S REQT'L_- gHe than that of Tokioka (1978) that the solutions satisfying (47)

o N _ have the fastest vertical variation and smallest equivalent depths
Together with its boundary conditions, (41) dePnes an eigenvabifeall the vertical modes that need to be considered on the
problem for . These eigenvalues determing and thenHe CharneyB Phillips and Lorenz grids. Therefore, all the vertical

through (42). modes on the CharneyPPhillips grid are well-behaved and
Similarly, (38) and (39) for isopycnal coordinates reduce tgave equivalent depths of the same order of magnitude as the
(41) with continuous equations, whilst the modes with the most rapid
2 variation in the vertical on Lorenz grids have much smaller
1Sm¥2, m?= o b) I b, (43) equivalentdepths because of their similarity to the computational
gHe gHe mode.
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q v q v q As noted by HKRB, this averaging of the layers also needs to be
j+1 * . ® used in the discretization of the mass Ruxes in the continuity
equation,
h _ — —WMFy) =
ISR & é ¢ ot ! cF (U (M) = 0, (55)

to ensure conservation of total (kinetic plus potential) energy
with the modibed form of the kinetic energy,

j q v q y q
Ke= w2 T+ 2" (56)
u h The een scheme for the SWEs associated with height
j—=1/2 o 3 coordinates discretizes the ter@sandZu of (30) using

2= % 2 SY_ & 1?}’

= _ ) = y -
(Z9e= 5@V + 3 (z e ) § S@
2=y 2 X & lfyx
(Zwe= @)+ é(z u )s @

_‘] % q

(67)

Jj—1

i-1 i-1/2 i i+1/2 i+l

Figure 2. The staggering of variables on the C-grid. This Pgure and the indexintr; EXpI’QSSIOI’]S forthe S_WES associated withisopycnal cc_)ordlnates
is based on Arakawa and Lamb (1981). are obtained by replacing, uandv byg, u andv , respectively,

in (57). These expressions were noted in HKRB and are brieRy
derived from the expression for the een scheme used by AL in

4. Analysis of the discretized SWEs Appendix D.
4.1. Formulation of een scheme 4.2. Linearization of the een scheme
For simplicity, the equations will be written in Cartesiarmsmg L 2= o X « , one bnds that the linearized kinetic

coordinates and discretized on a C-grid with uniform, but nognergy gradient in the- andy-directions for (56) is given by
necessarily isotropic, grid spacing. The arrangement of variables

on the C-grid is illustrated in Figure 2. YHF

—X E —
XKE = U]_ XLI + Vl )(V

The following difference and average operators will be used. . . (58)
Let denote any of the coordinate directiorsy andz, denote JKe=upyu” T+ vy yvy“F.
its discrete indexing and denote any function of . Then
. Introducing
ot svzt w2 () +v2S sy _ [0 for height coordinates, -
( +v2S sw2) (50) 1 forisopycnal coordinatep, (59)

c ) CHC ).

in order to allow the expressions for height and isopycnal
The index for which the quantity is calculated is usual§oordinates to be combined, linearizing (57), one obtains
suppressed. All of these operators commute with each other Xy
and obey the associative laws of arithmetic. Adozotl.(1997) (ZV)e = fY 4 ME M(—up & —HE
; ; " X g= fov '+ Vit S ,
provide a useful summary of identities they satisfy. H (60)
The discretization on a C-grid of as dePned by the Prst part [y — four 7—r = — e\ Y
of (2) is given by (Zu)g = fou ™ + ug + '?( S )

= wS (51) Using (51) in (58) and (60), one sees that the discrete linearized
form of the momentum SWE (30) is given by
and the discretization of the- andy-derivatives of the Bernoulli

furﬁtlggi/se?ggr?gbxégerg?cﬂsynéézsé%efgvde;};ne the modibed een % SHv™+ gy U v yu e
scheme are given by v (VWF < VV“E> s Imwxw _o
e 1 2 —e 1 2, H (61)
3 T3 o 3 "3 0 ©2 gy U e
where the OEO subscript indicates the expression is relevant to the: ug y (u—x T E) . l%@xxy .

een scheme. Additional averaging operatogsand g, which

allow the original and modibed schemes to be concisely debned ) ) .
are given by The brst line of each equation above consists of terms
corresponding to those present in the continuous equations.
THE L THE —F  —E (modibed scheme), The sgcond line consists qf additional terms .arising'from the
—ur . o ) discretization employed, which have the potential to give rise to
, (original scheme) spurious effects (the non-cancelling terms of HKRB). In HKRB,

. . the basic Row was taken to be zonal= 0, and the terms
For shallow-water and isopycnal coordinate models, the ggidportional to | were not considered. The instability of the
scheme calculates (22) using original scheme was traced by HKRB to lack of cancellation

betweenu F = u” andu E in the brst term on the second

(@ = = M = = (v = = : X S
= V=R V=R (54) Jine of they-component of the momentum equation. The kinetic
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Vector-Invariant Momentum Equation Instabilities 569

energy in their modibPed scheme was re-formulated as in (56)rtombersR, and R, for the RBowsu; and v; can be constructed

ensure that this term is identically zero {© = u™ ). using the above parameters:

Both terms on the second line of each of the equations in (61)
are zero for the modiPed schemes in both height and isopycnal _ 2up _ R R, = 2 = FR. (71)
coordinates. The stability of the modibed schemes derived below s fo x X’ foy e

due in large part to this. For isopycnal coordinates, the additional

term proportional to | is only zero when the mass RBuxes aM/e note that the factors of 2 in (71) result in values Ryand

calculated using (54). R, that are a factor of 2 larger than the values one would obtain
Linearizing (55), one also bPnds that using the classical depnition of grid-scale Rossby numbers.
Substituting the above relations into the discrete linearized

equations (61) and (62), after some algebra (doing normalizations

usingfo, H, g and c), one obtains a matrix form of the stability

—tu vy M H (G ) =00 (62)

. problem:
whereH is the unperturbed depth.
4.3. Stability matrices SE: SiccSEp, S$% SiEs][ue
icc SExn S Ex» SRS + iEx3 VE
: H : é Res S Res é Es3 C,_TE (72)
The properties of the numerical schemes are best analyzed in X
terms of non-dimensional parameters. So it will be assumed that =0,
the perturbations are of a wave-like form:
where
i X 0y« _
(u,v, )= (Ug Ve, g)EXP — 7 —Si fot), (63) Ei1= Risc g+ Rsc g
4 Exx= Risc g+ RScCHF,
where is a non-dimensional frequency normalized usiggnd Es3= Rysc g+ R/SC UF,
and are non-dimensional horizontal wave numbers for the - 81 &
. . . . . . Eio= RX>'sc S ,
andy-directions normalized using the grid spacings and v, 12 N Ry (UVF He) (73)
respectively. Asis usualin linearized stability calculations, physical Ba1= RiXsc (¢S g),
guantities are given by the real parts of the above expressions and Eis= Rc A(ueS pp),
of those obtained below. DePning Exs= Fuc (S o).
G = cosp/2), $=sin@2), p= (64) In (72), the diagonal element&;;, Ex» and Ezz represent

for any quantity which varies with, y andt in the same way 2dvection olu, v and , respectively, by the basic [Sou (v1),

e : . Sc ¢ in the same element akip represents the Coriolis term
as the quantities in (63), the andy-averaging operators give = . ) L .
q (63) y ging op g Sfov in (B3) andc ¢ in the same element ak represents the

= ¢ V- (65) Coriolis termfou in (B4). Note that the off-diagonal elements
' ' Ei1, Ez1, E13 and Ey3 are all equal to zero for the modibed een
and the differencing operators and  give scheme.
2i 2i 4.4. Stability of the modibed een scheme
x = 75 vy = 7)/8 . (66)

For the modibed een scheme, becdtise= E;; = Ej3= Exz=

It is also convenient to introduce the coefbcients correspondifigthe matrix equation (72) has the form

to the averaging operators,
(1+Hz=0, (74)
1 1
He= é(l +20),  e= 5,(1+ 20), 67 herel is the identity matrix ancH is a Hermitian matrix, i.e.

a matrix with its transpose equal to its complex conjugate.
and the associated modiPed coefbcients, which are given by Al eigenvalues of Hermitian matrices are real-valued and
_ hence the corresponding perturbations are neutrally stable. The

MF= Mg, r= e (modiPedscheme), g) eigenvectors of Hermitian matrices are also orthogonal (or can be

ME= g= 1 (original scheme) (68)  chosen to be when two or more of the eigenvalues are identical).
The gravity-wave and Rossby-wave solutions of (72) have different

One can debne the other non-dimensional quantities in Ry1ase speeds and hence different eigenvalues, so are automatically

number of different ways. A convenient approach is to depAEhogonal. In conclusion, linear perturbations of the form (63)
Froude numbers for the basic Rowsandv;: can be used to represent any initial conditions and the basic Zow

is neutrally stable to all linear perturbations.
u \Y%
Fu= 711 F = El, (69)

(¢ 4.5. Stability in isopycnal coordinates

and to complete the set of non-dimensional parameters using Consider now the stability problem (72) for the original scheme

2% X using isopycnal coordinates(= 1). It will be convenient to
Re= —, X=—. (70) introduce
oYy y
Reis twice the ratio of the Rossby radiusfp) and the grid spacing T Rec(1S g, Tv Rec (1S pe). (75)

y (the factor of 2 has been introduced to simplify expressions . . .
later) and X is the ratio of the grid spacings. In models usinlySing these depnitions with (73), one sees that
latitude and longitude coordinates, the latter ratio is small near the . .
pole, sothe range® X  1is of interest. The grid-scale Rossby Ei1= EsSTys, Bx2= EsSTus (76)

¢ 2016 Royal Meteorological Society and Crown Copyright, Met Ofbce. Q. J. R. Meteorol. S4€3 563D 581 (2017)
Quarterly Journal of the Royal Meteorological Sazigf16 Royal Meteorological Society



570 M. J. Belét al.

and (72) becomes where
+Ts  Sicc STS SRS Silis] [ue & C+RS, J FRRsc(lS g. (86)
icc STyXs + Tys SRS + ilps VE
|: SRS SRS :||:°HE} (77) Equations (85) and (86) are essentially the same as (6) in
=0 HKRB and are clearly a version of the dispersion relation for
' inertiabgravity waves. The Pnal term on the right-hand-side
in which of (85) is purely imaginary and destabilizes the inertiab gravity
3 3 waves. When, = 1, this term is zero and the solutions for
li3 ccT,RY, I3 cc TR, (78) are all real. So the SWEs discretized usjrig the Zu and Zv
terms and isopycnal coordinate models should not suffer from
and symmetric instabilities of the kind discovered by Hollingsworth
. . . et al.(1983). This result is consistent with the comments made
= Shks= SRscSRsc, (79) in Arakawa (2000) that were noted in the Introduction and the

. . . . results of the previous subsection.
is the Doppler-shifted non-dimensional frequency of the ¢ dependence of the non-dimensional growth rate on

perturbation. _ _ _ . the non-dimensional parameters for height coordinate models
By direct calculation of the determinaly of the matrix in (| = 0) can be found by writing c+i iin (85) and
(77), one bnds that eliminating ,:
Du= 3+P 2SQ* SPQ, 80 - &
M Q ¢ (80) 2 2=8a+ Jd+ P 87)
where This solutionto (72) has made no assumptions or approximations
_ otherthan = 0.
P=Tiss +Ts, . (81) The growth rate ; hence depends on the ratiha®. When
2= 2P+ RREXS2+ RS, J aord &, | isrelatively insenstive taand, to within
Q
50%,
Substituting =S P into (80), one sees that it is a solution of 5 5
Dy = 0. Hence it is easy to factorize (80), o J2, A | (88)
_ 2& A2 This is the formula derived by HKRB for a slightly less general
Du=( +P( “SQ). (82) case. For the case wigh | J|, evaluating (87) using a Taylor
The solutions oDy = Owith = + Qare gravity waves and the>€"1€s, On€ Pnds that
solutions with = S P are Rossby waves; both sets of solutions 19 5
are neutrally stable. i oy @ | J. (89)

An interpretation of this result is presented in Appendix F. ) ) N
The equivalent depths and associated veloditieghe ocean

4.6. Instabilities of the original schemes vary greatly. Barotropic modes in water of 4km depth have
¢ 200ms?, whilst the brst baroclinic mode has 3mst.

There are, of course, general expressions for the solutionéo‘gfOIISCussed in section 3, when the number of vertical levels is

: . : ; : ted byK, the highest vertical wave number mode in a model
the cubic equations derived from setting the determinant of figno - . 1 31 .
matrix in (72) to zero, but the resulting expressions for thgsnd the CharneyD Phillips grid has 3K>2ms>* and that in

; ; 3 $2 1 ;
growth rates of the instabilities present in the original scheme &R using theLorenzgridhas 5 K>“m s°!. In a model with

complicated and do not aid understanding. The expressions for.0km grid in the midlatitudes, x 1ms*. Hence, for the
instabilities aligned with the grid are much simpler than those f&#gh wave-number baroclinic modeg ¢ andJ ~ XR, and
the general case so, following HKRB, these are considered Wp&nX is of order 1 andR, is larger than or of order 1, the growth
in this section. The solutions obtained numerically motivatd@€: i, i given by (88). For the barotropic modes, cs/fo

the calculations for very small equivalent depths presented at i Is given by (89). _

end of the section. The solutions are only presented for the eer.©" the baroclinic modes using (88), the second part of (86),

scheme, but entirely analogous arguments and solutions hold §8f?) and the second part of (67), one sees that the most unstable
the AL scheme. perturbations have the largest values of

2 .
4.6.1. Instabilities aligned with the grid J= 3RR sin® 5 C0S5- (90)

We will consider instabilities that are aligned with the grid an@ifferentiatingJ with respect to , one bnds (in agreement with
without loss of generality, take= O (ratherthan = 0). Bothu; HKRB) that it is @ maximum for the three grid-point wave with

andvy will be allowed to be non-zero (which was not the case in ° 3E,R.
HKRB). = 0implies thats = E;,= O andc = ug= 1. One == = =iy (91)
then Pnds thaE;3 = 0 whether or not, = 0 and 3 2 2

_ _ _ WhenF,R. = XR, 1, as is often the case with modern grids,
Bin= B»=Bs=Rsc. (83)  these modes can grow very rapidly. For example wRen 10,
_ ; - 4381 -
Consequently it is useful to introduce the Doppler-shifted norﬁ?g;easiags a|1 fagfc:/rvl;[)?f%_z 710; ?: ,t?gelp;ertwu;ti)?ﬁc?r; V;glélgt
. ! . 0 )
dimensional frequency 3.3x 1(®s, i.e. just less than an hour.

= SRsc. (84) For the barotropic modes
Setting the determinant of the matrix in (72) for the original i H = Rc(@S = gFu sin? = cos—. (92)
een scheme to zero, one of the solutions is= 0 and the other 2a 3 2 2
solutions have Differentiating, one Pnds that ; is a maximum when cos =
o o 3°Y2 In the oceanF, is typically less than or of order@. and
=a+i(1s 1)J (85)  the maximum value of ; = 4F,/(9 3).
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Figure 3. Growth rates, ;, for the original een scheme using height coordinates for a Row aligned with thevgrd@), X = 1 andR, = 10 as functions of (a)
with =2/ 3and(b) with = 0.

4.6.2. Instabilities for very small Froude or Rossby numbers  Evaluating §  forany with = 0, one bnds that

Consider next the instabilities obtained in height coordinates =0. (97)
whenF, andF, are very small compared wit, andR,. For this
caseFiz B3 Oand allthes; terms are proportional t&, or

R,. Ask, andF, tend to zero, only_t_he last e_Iement In _the last ro at the growth rates are stationary in the direction ofhen the
and the last column of the stability matrices remain non-zer

. . . . B rturbations are aligned with the grid. Taken with the numerical
The instabilities are therefore determined by the determinant Its. i : .
. ts, it st I ts that the fastest t t
the upper-left 2« 2 submatrix. R,Esu s, it strongly suggests that the fastest growing perturbations

. . . are aligned with the grid for the limit of small Froude
In practice, the growth rates of the instabilities are likely to %mberg.l g

reduced by dissipative Buxes. Vertical diffusion of momentumis a, analysis of the instabilities when the Rossby number is
parametrization of animportantphysical processinocean models, smali can also be carried out. Denoting the eigenvalue
which usually has large coefPcients within the surface boundagy tions for Ri= R,= 0 by o the gravity-wave solutions
layer and is a sufpciently fast process to need to be calculﬂg\ae '
implicitly. As the specibcation of the viscous coefbcients varies 2
considerably from one numerical model to another, in the analysis

y y §—c2c2+R§<52+X2),

This implies that ;/ = 0forany with = 0. This shows

below itis specibed simply as being proportionatg that is we (98)

setAnDmu = S Anu, leaving the dependence on the vertical (and

horizontal) wave numbers of the disturbance for the reader &md the Rossby waves haye= 0. Linearizing the determinant of

specify. These viscous dissipation terms only make contributidhe matrix in (72) about these solutionsand writing= o+ 1,

to the diagonal elements in the upper two rows of the stabilitg bPrst order inR, andR, one Pnds that the gravity waves have

matrix. The revised diagonal elemerig, andE,,, are given by ce
. ) . ) 1= 5 (1S B, (99)

Ep= EinSiAnSt, Ep= ExnSiAnfdh. (93) 0
and the Rossby waves havg = 0.
Because the determinant in (72) reduces to just the upper left

2x 2 submatrix multiplied byEs3 S, the solutions consist of 4.7.  Numerical evaluations of solutions of the stability matrices
the Doppler-shifted OgeostrophicO mode with Ezz and two

other solutions, which satisfy Figure 3 presents numerical evaluations of the fastest growth
rates obtained from (72) for a basic Row with= 0, using height
_Eqt+Ey L 2 94 coordinates (| = 0) with R, = 10 andX = 1, for a number of
B - ' (94) values ofF,. The corresponding bgure for the AL scheme is
E,SE 2 3 similar, except that the non-dimensional maximum growth rate
S (122> S (icc + Ew)(icc S Ey). (95) is approximately 2 rather than 1. Figure 3(a) plots the non-
2 dimensional growth rates; as a function of with =2/ 3

) ) ] _and Figure 3(b) plots ; as a function of with = 0. From
The Pprst term in (95?1) is a Doppler-shifted frequency with gigure 3(a), it is apparent that whefy, 1 the fastest growing
decay rate equal tmfy =, which is what one might expect fromdisturbances have 1. Figure 3(b) shows that the maximum

the viscous dissipation. Evaluatigwith = 0, one sees thatnon-dimensional growth rate wheR, = R, = 10 is close to 1.
s = 0,ug = landE} = E,and hence that These disturbances increase in magnitude by a factor oR&
in f@'s. At midlatitudesf$*  10*s, which is just less than 3h.
— & i i & _ 2X From Figure 3, it is also clear that the growth rate at the chosen
S=Sic (icc SEx) =+ |?Rus3c ' (96) Value ofR, is strongly dependent on the Froude numbét,),

being weak whefR, < 0.1 and strong wheifr, > 5. High values
When the imaginary part ddis non-zero, one of the two solutionsof the Froude number are obtained for the highest vertical modes,
is unstable in the limit of small viscosity. particularly on the Lorenz grid.
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3.5

The dash-dotted line in Figure 4 is the solution of (89). This
solution depends only orR, and is expected to hold only
when F, is very large. Comparing Figures 3(b) and 4, one
sees that the approximation requir€s to be very large to be
accurate.

Figure 5 illustrates the growth rates of the unstable solutions
of (72) for the original een scheme using height coordinates as
a function of and for four combinations ofR, and F, when
X = 1. The fastest growing solutions have growth rates similar to
the fastest growing solutions with= 0 and their wave number
is quite closely aligned with the-axis, particularly wherk, is
large.

Figure 6(a) shows the maximum values qf obtained for
all and as a function off,, on the abscissa, arfg, when
X = 1. The largest growth rates are obtained when bBth
and R, are large, values of; as large as.2 being obtained
whenR, = F, = 50. These perturbations take less than 90 min
to double in amplitude at midlatitudes. The corresponding

Figure 4. Growth rates, ;, for the original een scheme using height coordinatdlOt (not shown) of maximum growth rates for perturbations
for a Row aligned with the gridg = 0),X = 1,R, = 10andr, = 10asfunctions restricted tothose with = 0Qis barely distinguishable by eye from
of with = 0. Solid line: (72). Dashbdotted line line: (88). Dashed line: (89).|:igure 6(a). Figure 6(b) shows the direction and magnitude of the

wave number (, ) of the fastest growing perturbations. These

Figure 4 provides a comparison of the solutions of (88) arerturbations have 0 and the wave number of maximum
(89) with those of (72) calculated usiffig = R, = 10andX = 1. growthrate 2.1 is consistent with the Pndings of HKRB and
The dashed lines are solutions of (89) with < & and the (91). WhenX = 0.1 the fastest growing disturbances also have
solid line is the solution of (72). Clearly the agreement is good. 0 butthe maximum growth rates are somewhat smaller (their

(@)

-

0.5

Figure 5. The fastest growing instabilities (maximuym|) for varying and
combinations oR, andF,. (&) R, = F, = 10. (b)R, = 10,R, = 40. (c)R, = 40,F, = 10. (d)R, = 40,F, = 40.
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Figure 6. The fastest growing instabilities for aland for the original een scheme in height coordinates for the casewvith0 as a function oF, (on the abscissa)
andR;: (a) the maximum growth rates; and (b) their wave number (, ); the arrows show their direction and the contours their magnitude.
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Figure 7. The same as Figure 6, except that the results are for the AL scheme rather than the een scheme.

maximum being of order 0.9 for the rangeffandR, plottedin 5. Numerical analyses of the SWE

Figure 6(a)).

Figure 7 is the same as Figure 6, except that it shows Theinvestigate the instability using the fully nonlinear shallow-
maximum growth rates for the AL scheme rather than thgater equations, we implemented the een scheme (as described in
een scheme. The plot of maximum growth rate for symmetritibsection 4.1) on a [0, K [0, 1] doubly periodic plane with an
disturbances only corresponding to Figure 7(a) is again nexplicit fourth-order four-stage RungebKutta time-integration
shown, because they are barely distinguishable. scheme. The model was validated using initial conditions given

Figure 8isthe same as Figure 5, except thatitwas obtained ubiyng = sin(2 y), v= 0 andh chosen to balance witi. Second-

vi = up instead ofv; = 0. It is symmetric about the line = , order accuracy in space and conservation of total energy and total
as one would expect from the symmetries of the problem. Mopetential enstrophy within time truncation errors was achieved
interesting is that it shows that the most unstable perturbations all four conbgurations tested: original and modibed schemes,
are aligned with the grid rather than the background Row, theith height and isopycnal coordinates.
alignment again being particularly strong whé&g 1. The One of the main outcomes of this study is that the developer
pgures for this case, corresponding to Figure 6 for the een scheifre new numerical scheme should be able to test whether it will
and Figure 7 for the AL scheme, are not shown because theysaféer from Hollingsworth-type instabilities in a shallow-water
barely distinguishable from those already presented, except tihatdel context, rather than having to wait for a fully 3D version
whenu; = v; there are two maxima, the second being obtainexf the scheme to be developed. The key point is to use uniformly
from the single maximum present for, = 0 by ref3ection in small equivalent depths, which slow down the gravity waves and
= highlight nonlinear effects. A similar approach was discussed

Numerlcal solutions of (72) strongly suggest that all linedry Gassmann (2011) in an investigation of the divergence of
disturbances to a Row in any direction are neutrally stable for themputational modes on triangular grids. To help researchers
original schemes in isopycnal coordinates. This result motivateack the instability at the shallow-water development stage, we
the analysis presented in section 4.5. propose two test cases.

¢ 2016 Royal Meteorological Society and Crown Copyright, Met Ofbce.
Quarterly Journal of the Royal Meteorological Sazigf16 Royal Meteorological Society

Q. J. R. Meteorol. S4€3 563D 581 (2017)



574 M. J. Beléet al.

Figure 8.The same as Figure 5 except that instead ef 0,v; = uj.

5.1. Instabilities on a constant zonal Row Since the prognostic variables are functions only, tfie solution

is independent ofx and the shallow-water equations reduce
In this brst test case, we used a constant initial zonal Rowtoea 1D problem. The only initial source of error is due to the
Rat bottom (@, = 0 in (31)) and an additional forcing term non-cancellation of the nonlinear terms in the evolution equation
equal tofou; on the right-hand side of the second part oforv. For appropriate choices of parameters, the instability aff3icts
(30) to produce a balanced steady-state solution (parametttte height coordinate model with the original een scheme, as
up=50 x,H=25 y?2fy=10,g= 10, x= y= 1/64and expected. We show in Figure 10 an example (parameters10,
time step t = 1/1024, which giveR, = 10 andF, = 10). To H=0.1,fp= 2/ x,g= 10, x= y= lU64andd= 1/1024,
trigger the instability, we added a small perturbation toat which givesR, = 20 andF, = 10) of the spectrum a few time
the central point of the domain (we used H/1000). The steps before the model blows up and also the evolution with
modiPed scheme in height coordinates and both schemestiiie of the maximum error in the layer thickness)((i.e.
isopycnal coordinates did not reveal any instabilities in thRe maximum difference from its original value). The initial
tests performed. However, the height-coordinate model wilbndition is dominated by a low wave number pattern (wave
the Original een scheme suffers from instabilities with adominaﬁ\ymber 2)’ but as time evo|vesy errors in h|gher wave numbers
non-dimensional wave number of approximately 2 3, which  appear and the instability is triggered. Once triggered, the growth
grow in amplitude by a factor larger than 38or every non- rates are very large. The estimated non-dimensional growth
dimensional time unit (see Figure 9). Taking the difference frome for the parameters used in Figure 10 js 2.0. This test
the initial state,E(t), to grow exponentially with time at a ratecase has non-zero relative vorticity and growth rates that are
given by ifo and btting a straight line through the right panel 0§, me\what larger than those obtained using the formulae for a
Figure 9, we obtain an approximate value farof 0.8, in Very .qnstant Bow on arf-plane. Figure 11 provides a snapshot of
good agreement with Figure 4(b). the model Pelds at a time when instability is emerging intthe

- . . _ andv pelds.

5.2. Instabilities on a sinusoidally varying zonal 3ow
In this second test case, we set the zonal velagdityy) = 6. Concluding summary and discussion
uisin(2 y)andh(x,y) = hg, where bothu; andhg are constants. T

In order to create a steadv-state solution. the bottorm topoara hhe factors that determine the linear stability of constant Bows
. y ' pograpgy anf-plane to grid-scale disturbances have been claribed for
(bathymetry) is set to

a number of discretizations of the vector-invariant momentum

_ uifg 5 equations which use regular rectangular grids in the horizontal.
(XY = 5 g cos(2 y). The 3D stability problems obtained in height coordinates and
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Figure 9. Shallow-water model run with height coordinates, the original een scheme, an initially constant water depth, a constant zonal initial vekbjty, zon
symmetric forcing to keep the system in a steady state and a small perturbation in the centre of the domain. (a) Specyrslic@d , where the wave numbers
were normalized to (0, ). (b) Evolution of E (t), the maximum difference from the initial state of the layer depth
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Figure 10.Shallow-water model run with height coordinates, the original een scheme, an initially constant water depth and sinusoidal zonal velocitytorith a bot
topography, which keeps the zonal Bow in balance. (a) Spectrunyliae of , where the wave numbers were normalized to (0,(b) Evolution of E (t), the
maximum difference from the initial state of the layer depth

isopycnal coordinates have been conbrmed to be soluble asimbers are large and the instability is nearly aligned with
linear combination of products of a vertical mode and a solutiotihe grid.

of linearized shallow-water equations (SWEs), with the depthSimple expressions for the growth rates have been obtained
H of the water determined by the eigenvalue of the vertidal instabilities aligned with the grid and for instabilities when
mode. Two-dimensional SWEs that can be used to explore the Froude number or Rossby number is very small. Our
stability of new 3D dynamical cores written in height or isopycnalimerical investigations of the original schemes for isopycnal
coordinates have also been identibed. coordinates found that they do not suffer from Hollingsworth

The depthH of the SWE associated with the modes of thastabilities, in agreement with Arakawa (2000). The determinant
highest vertical wave number obtained using the Lorenz gofl the stability matrix for this case has been shown to reduce
decreases more rapidly as the number of depth levels increésea simple factorizable form that has real solutions and
than is the case for solutions obtained using the Charneyb Philkys explanation of this result has been proposed in terms of
grid, for reasons related to the occurrence of the computatiorsgdlutions of the linearized SWEs with uniform potential vorticity
mode on the Lorenz grid. (Appendix F).

The 3x 3 matrices that determine the linear stability of the een As shown by HKRB (see the discussion following (85) and
(energy and enstrophy conserving) scheme (and the AL schen(®9)), the instabilities are inertiab gravity waves that have been
both in their original and modibed forms and in height andlestabilized by the discretization of the generalized Coriolis terms.
isopycnal coordinates, have been constructed. It has been sh@ensequently, and consistent with the discussion in Appendix B
that these stability problems for all the modibPed schemes candfgGassmann (2013), one would not expect quasi-geostrophic
written as eigenvalue problems for Hermitian matrices and hent@dels (which do not represent inertiabgravity waves) to
that all the modibed schemes are neutrally stable. The instabilisa§er from them. Gassmann (2013) notes that the instabilities
obtained for the original schemes in height coordinates gravecur preferentially in regions of high vertical shear, where the
most rapidly when the Froude number and grid-scale Rosskiyatibcation is relatively weak and the phase speeds of the internal
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Figure 11.The Pelds from the same integration as Figure 10 at a timé.35 when the instability is emerging. (a) (b) u. (c) v. (d) g. In (a) and (c) the middle
lines indicate the Peld valuestat 0.35 and the upper (lower) line indicates the maximum (minimum) value attained earlier in the integration.

modes are consequently relatively slow. The Froude number Wik momentum equations to uniform motion of the frame of
be highestintheseregions, so, provided the Rossby number is ngfarence. As suggested (but not proved) by HKRB and AL,
enough, the instabilities will grow more rapidly in these regiondy smoothing the kinetic energy in the Bernoulli potential
Our results show that basic states that have no horizontaing a stencil similar to that used in the generalized Coriolis
temperature gradients (and associated vertical shear in thens, one can obtain a modibPed scheme that is stable to all
horizontal velocity) can suffer from the Hollingsworth instabilitydisturbances. The instabilities for the original schemes grow
when discretized using the een or AL schemes and heigktremely rapidly when the Froude number and Rossby number
coordinates. High vertical shear and high horizontal velocigre very large, but sufbcient cancellation of terms may be possible
tend to occur near to each other, so in practice it will be difbculising this approach on other (e.g. hexagonal) grids, as suggested
to distinguish whether an instability seen in a model is associatgtGassmann (2013).
with one rather than the other, especially when other factorslt is hoped that the above results will help developers of
(stratibcation, vertical grid spacing) are also implicated. Thew dynamical schemes (e.g. on triangular, hexagonal and other
instabilities can be obtained in height coordinates ifa CD P vertigiishes) to test their schemes using appropriately conbgured
grid is used with a large number of vertical levels, but will usuafByVEs and to devise modiPed schemes that do not suffer from
grow faster on a Lorenz grid (with the same number of vertichiollingsworth instabilities.
levels), because the equivalent depth of the most rapidly varying
modes is then much smaller and the Froude number mudcknowledgements
larger. These instabilities do not occur for these simple states
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Appendices Table A2 Table of Roman symbols for primary variables.
Appendix A: Notation Roman b Lower case
. . . . t 86
Tables A1D A3 summarize the notation used in the main body oﬁ Eupggmier ((19))
the article. The third column of the tables refers to the equations speed? = gH
where the symbols are prst introduced. c,c cosines of wave numbers (64)
f the Coriolis parameter 2)
g gravity 4)
Table Al Table of Greek symbols for primary variables. h function of z related tow or z (14), (B10)
m,n constants related to equivalent depths (42), (43)
p pressure 3)
Greek D Lower case q potential vorticity (22)
a difference Operator (50) S,S S.lnes of wave numbers (64)
| Kronecker delta function (59) t time (5)
vertical component of the (2) u,v,w  velocity components (5)
relative vorticity X,y ho_rlzontal co_ordlnates (2)
height of the free surface (9) z height coordinate (4)
the grid index in any direction (50)
, wave numbers of perturbation (63) Roman b Upper case
in x- andy- directions
H coefbcients from averagingin - (52) Am coefbcient of viscosity (5)
coefbments f_rom averagingyn (52) Du determinant (80)
a coordlnat_e in any direction (50) D total derivative (as in DDt) (6)
Doppler-shifted non-  (79), (84) Dm diffusive operator (5)
glme_nsmnal frequency Ej matrix element for een scheme (73)
density ¢ stratibeation in| (4) F.,F,  Froude numbers (69)
|nve|rse3 ?tratlbcatlon inisopy- (19) H the total depth (or equivalent depth) (12)
cnafmo e " H a Hermitian matrix (74)
any function o (50) [ the identity matrix (74)
non-d|mgn3|onal frequency of (63) J a non-dimensional quantity (86)
perturbation Ke horizontal kinetic energy (1)
Greek B U K the number of vertical levels 37)
ree pper case M Montgomery potential _ (20)
the difference between neigh-(50) g 8 1 (t:r:)eefnpucrine%?; of zeros in the vertical (éﬁ)
bouring grid points R twice the ratio of the Rossby radius and(70)
a non-.dlmensmnal parameter (41) grid spacing
fﬁr vertical Ir;j(f)des_ 3 R, R, Rossby numbers (71)
the Bernoulli function ®) S a non-dimensional quantity (96)
Ty, Ty modibPed Rossby numbers (75)
X grid aspect ratio (70)
W a constant in normal mode solution (44)
Z vertical component of the total vorticity  (2)

Appendix B: Separation of variables in height model

B1. Basic state and perturbed equations

. , . ) Hydrostatic balance for the perturbations is
Assuming the basic state of a stably stratibed density lg&til

as described in section 2.1.2, we have that

o] “
— =8 , B6
doo - - 9 (B6)
e =S 00 (B1)
the incompressibility condition is
and
. u % w
P1= f oo(V]_XS U]_y). (BZ) —_t+ — + — = 0, (B?)
X y z
Denoting the perturbations by primed quantities and _ _ _
neglecting products of perturbations, the horizontal momentur@nd the density perturbations satisfy
equations for the perturbations are given by
d
U o, « . —tUu—+V—+w—=0, (B8)
—tSfov S w=S —X+ AnDnu, (B3) t X y dz
because the heating by dissipation is zero in (B8) when the basic
v . state has no shear. Finally, the boundary conditions are
T+ fou+ u =S T+ AnDmv, (B4)
w =0, z= 0,SH,. (B9)
where
In summary, the above set has bve unknownsv, w,
-V S 7u’ -P (UU + V). (B5) andp that are constrained by Pve equations and the boundary
X y 00 conditions (B9).
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Table A3 Table of subscripts and superscripts. The horizontal velocity Peldug,vs) is again in geostrophic
balance with a pressure bgld so
Subscripts
M = Mg(b) + My, Mq = f(vix S uyy). C2
b the (height of the) bottom (31) olb) + My, M = T(vixS ty) (c2)
ie i?r?;é\i/r?ell(?{/]tpg? ifde) ((182;) The relative vorticity is again zero and the total vorticiy,= fo,
i,j  x-andy coordinate indices (50) IS |ndepen_dent of position. . .
K the vertical index (34) _ The horizontal momentum equations for the perturbations are
X,y horizontal coordinates (50), (51)  9givenby
E een scheme (52) .

F modibed een scheme 53 u - - . fovr - v
o] (Sg) ) —L8fws wus P ws @)=5 (3
/ 0 X

M matrix (80) v fou
00  constant density (3) V. + + 01 WwWE @)y=g
0 the stably stratibed component of the(B1) t fou t 0 ( S ) S y’ (C4)
basic state _
1 the constant velocity component of the (B2) where is given by the brst part of (B5) and
basic state
Superscripts =M+ (). (C5)
U averaging i (52) From (23), hydrostatic balance for the perturbations is given by
averaging iry (52)
a perturbation (9), (B3) ﬂ =Sz (C6)
. transports through faces of cells (22), (33) b '
0 a function of the vertical coordinate 9 o )
a function ofx, y andt ) Continuity of mass, (24), gives
~ anaverage of
. u %
—tu—+v—=3 o(+ —), (C7)
t X y X y
B2. Separable solutions and the boundary conditions, (25), become
Comparing the bve equations just summarized with those in Z + uli + V1i =0, b= b0),b(SH). (C8)
section 6.11 of Gill (1982), one sees that they enjoy separable ! X y

solutions of the same form. Departing slightly from the order
of GillOs derivation, we assume that the variations,in and [N Summary, the above set has four unknowasy, M andz,
b are given by (9). Ther oo = (z) (x.y.t), where is thatare constrained by four equations and the above boundary
given by (11) and the horizontal momentum equations redu&@nditions.
to (10).
Following Gill, we let C2. Separable solutions

= 42, w=R2wKxVy,t). (B10) Let

Substituting the third part of (9) and Prst part of (B10) into (B6), - M )
we obtain (13). Substituting (B10) into (B8) and introducing the ! Buley., v (VXY 1),

. (C9)
separation constarie, we obtain (14) and M = M(b)g (x,y,1).

HoW = — + Uj— + vi—. (811) Then
t y y

Substituting (9) and the second part of (B10) into (B7), we can = M) (xy.0), xy, =g +wmu+ vy (C10)

choose to set (15) and obtain and the terms in (C3) and (C4) other than those involving

u v, reduce to (26). These additional terms will be considered shortly.
(* + *) +w=0. (B1 Letting
X y
Eliminatingw from (B12) using (B11), we obtain (12). z = Rb) (C11)

Hence the solutions dependent any andt are governed by
the shallow-water equations (10) and (12). The vertical structugd substituting the third part of (C9) and (C11) into (C6) gives
functionsR(z), &2) and P(z) are determined by (13), (14) and(27). Also substituting (C9) and (C11) into (C7) and introducing
(15) and the boundary conditions (16) obtained from (B9) anthe separation constatie, one obtains (12) and (28).

(B10). The vertical structure of the additional terms in the horizontal
momentum equations can now be considered. Using (19) and

Appendix C: Separation of variables in isopycnal model (28), one sees that their vertical structure is given by

C1. Basic state and perturbed equations _ dR N2

—_—= —. C12

0 odb He ( )

The assumed basic state is the same as that in the previous section. N )

Here, we just adjust the notation. So the stably stratiped statElgice these additional terms have the same vertical structure as

expressed as a prokigb) that is in hydrostatic balance: the other terms in the momentum equations and (C3) and (C4)
dM reduce to (26).
0

— & Finally, the boundary conditions obtained from (C8) and (C11)
S 2. (C1)
db reduce to (29).
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Appendix D: The een scheme horizontal discretization one then sees that the een scheme discrejizdsy
The een scheme calculaps at the centralu point in Figure _ 377"3’4, 1 —x
D1, located ati(j + 1/2), as the sum of products of quantities (@v)e 3(qu ) BGy(q’V )- (BS)
calculated at the surrounding points (A, B, C and D in the
Pgure): By direct calculation of terms, one can establish that
- oD & at
@V)ijrv2 = ipuNVieyzert irvVisyzje 1) Gy(a b)jyz= 280’ S ab’ (D6)
o yVieyg i vaVisy o) Substituting (D6) into (D5), one obtains the brst part of (57).

The een scheme calculatga for the u point stored at
The coefbcient at each of these velocity points is calculated ($e@el/ 2,j) using

AL equation (4.21)) using values @&t three nearby points:
I (Qu)isw2) = ir1jru2Uivgjsy2 T ijrualijiyp (D7)
ij+y2 = E[Qi+1j+l+ Gij+1+ Gijl, toisualjsyo toiv1jSualis 1Sy

1
U2 = E[Qiéml + Qjr1t Gl A similar argument to that given above establishes the second
1 (D2) part of (57).
ij+y2 = E[Qiél,j + Qi+ Gj+al,
1 Appendix E: Stability analysis for the AL scheme
U2 = E[Qiﬂ,j + Gj+ Gijeal o ,
As for the een scheme, the original and modibed AL schemes can

. . be concisely written by dePning the averaging operators
At point A, the prst two of thesg points used to calculate are y y g ging op

those on either side of point A (at points 1 and 2). The sum of Uy -
these two contributions at A is hence givendy /6 and the ' ' (E1)

sum of the corresponding Prst two contributions at A, B, C and A x L L
D is given by where the OAO subscript indicates that the expression is relevant to

the AL scheme, and the associated OmodibedO averaging operators

foy — — — —
C = §(OIXV ) (D3) e A B A for modibed scheme,
—UB — B .. ( 2)
o . . i . for original scheme
The other contribution at point A is calculated using the value of

g at point 5 in Figure D1(a). Point 5 is on the opposite side of gimilarly to (54), the AL scheme for isopycnal coordinate
the u point from point 2. The remaining contribution at point B jodels sets

also involveg at point 5. So the sum of these two contributions

is equal to 16 timesq at point 5 timesv * at point 2. The bnal @=— M= -ws W= —~xs (E3)
remaining contributions from points C and D are given b#61

timesq a~t pOint 2 timeSTx at pOint 5. Denoting the Ogeometrignd discretizes the Continuity equation as

productO for any quantitiesand by

1 —+ (TBu)+ y(Mev) =0 (E4)
Gy( , Jijtv2 E( LT L i) (D4) t
It then discretizes the terngy andqu in (30) using
y s Y
@)a=@V5) + il (v gy
i ( LTX) + iU X.
X
@)a=@5 9+ 2 i [(110) ()]
1 A 2 B 3 iy =0
\% + (v + v,
?q o .q o .q i(v?) iv
in which the fourth part of (50) debPneg and j and
h -Lla =4 (E7)
u = pid = pia
o o * L L 12 12
KetebPan and Jacobson (2009) note that the AL scheme can be
expressed in the form given by (E5) and (E6) and these equations
are derived in detail in the appendices of Keteban (2006). For
‘C[ 4\/ q IV #q Eeight cgordinadtes,bthe same expressions apply, qwitplaced
4 D 5 C 6 yZ,U Dyuandv DyV.

The original version of the AL scheme takgdo be discretized

Figure D1. A depiction of the variables used by the een scheme in the calculati@ntl".e same way as in_thel original een SC_heme- AL propose a
ofqv attheu pointin the centre of the bgure. The een scheme uses the valuegwddibPed form for the kinetic energy in their equation (6.1). A
v atpoints ABD and the values gt points 1D6 at this point. form more similar to that used above for the een scheme, the
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prst term of which gives the same gradientKgafas the form whereqgg is debPned by analogy with (63). Using (F2), one sees

proposed by AL, is given by that the Prst two rows of (77) can be written as
_w@re s L o eSiccedSRECE+ LrH yag= 0
2Ka= U2 "+ Vi Sl—zij(u V). (E8) E E XH 2 , (3)
. ~ Cgx | _
The last term in (E8) is only used in the modibed scheme. It has iccug+  VeSRs H S ET“H X% = 0.
been introduced here to cancel contributions arising from the ) ) o
Coriolis terms proportional to and in (E5) and (E6). In other words, the asymmetric terms in the matrix in (77)
Using the above discretizations, one bnds that in place of (@{§ Proportional toge. For perturbations withgg = 0, (77)
and (62) one obtains consequently simplibes to
AV TRLESVIRTIL S o (F4)
— Sfov + + Ul U™ T+ vy lcc S| =0
t 0 g x 1 x ly éRCTS éF\’cS cpTE
= 1 —HA — A
S ﬁ(ul yiju o+ Bvixiju ) Hence is the eigenvalue of a Hermitian matrix and is real-
B % —VUA (1S ) —a (E9) valued. The solutions withie = O are therefore neutrally stable.
+ V1 ox (V Sv ) + Tul x i jVv Moreover, becausg = 0implies a constraint relatingg, ve and
fos XYY g, the system (F4) has a redundancy, which allows us to drop
S ,%(*“B S *“A) =0, the third row of equation (F4) and use the constraint to eliminate

g from the brst two rows of (F4). This reduces (F4) to & 2
matrix equation:

Yt tfou Xy, gy +u XVXA+ vi yVyHB |: +A=2 Sicc éAsiz:| [UE] Z 0 (F5)
T icc +AS; SAss | L% '
S*(Bulyljv +V1XIJV)
12 18 (E10) whereA = 4ic?/ (c c f2). Setting the determinant to zero gives
+Upy (UX B U™ A) + ( - B) Viyiju A the numerical inertiab gravity wave dispersion relation,
four 7= 5 = —
(78T =e 2:<cc>2+‘:§2(s;+52y2), (F6)

in agreement with the roots 2 = Q? given by the second part of
(81) and (82).

The dispersion relation for perturbations in whicte is
non-zero can be determined by using (F3) to form a vorticity

where equation. Multiplying the second part of (F3) bys2iH x)>!
and subtracting 2 (H y)S! times the brst part of (F3), one
_ |0 forthe original scheme (E12) obtains
B~ |1 for the modiped schem

(Zis . 2is >v2cc(s S )

VE Ug ) S —Ug+ —VE
The brst lines of (E9) and (E10) consist of terms corresponding H x H 'y H X y (F7)
to those in the original equations. For the modibPed schemes, the +(Tus + Tys)e= 0.
other terms are either zero or contribute only to diagonal terms ) o
of the stability matrix, so the stability matrix is Hermitian, as ibubtracting: ¢ fo(cH)>* times the last row of (77), one Pnds that
was for the een scheme.

( +Tys +Tys)ge= 0. (F8)

Appendix F: An interpretation of the stability of the original

scheme in isopycnal coordinates The factor in parentheses in (F8) can vanish only ifis real,

conbrming that wave-like solutions with non-zero potential

S . . . vorticity are neutrally stable. Note that this factor agrees with
Some insight into why the rather asymmetric matrix obtained f‘i’ﬁ%factor + Pin (82)

the original schemes in isopycnal coordinates (see (77)) has suc
simple solutions can be obtained by considering the pmentﬁslaferences

vorticity of the Bow and its perturbations. AL show that both

th(_’?feen and AL SCh.ehmeS Wl!l not (r:]har[g]dlﬂ a BOV; that has_ hAdcroft A, Hill C, Marshall J. 1997. Representation of topography by
uni Orm g SO_ o_ne_mlg _t anticipate t at only perturbations With - s 5ved cells in a height coordinate ocean molliein. Weather Rel25
potential vorticity identically zero will be able to grow and that 2293p2315.

this will constrain the instabilities. The calculations present@dakawaA.2000. A personal perspective onthe early years of general circulation
below support this interpretation. modeling at UCLA. IrGeneral Circulation Model DevelopmBaindall DA.

The linearized form of the potential vorticity (22) is given by (ed.) International Geophysics SeTiesl P 65. Academic Press: San Diego,

CA.
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